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Abstract

Motion graphshave gainedpopularityin recentyearsasa means
for re-usingmotioncapturedataby connectingreviously unrelated
segmentsof a recordedibrary. Currenttechniquedor controlling
movementof acharacteria motiongraphshave largely focusedon
path planningwhich is dif cult dueto the densityof connections
foundonthegraph.We introduce"state-annotatethotiongraphs,
a novel techniquewhich allows high-level control of characteibe-
havior by usinga dual representatiomonsistingof both a motion
graphanda behaior statemachine. This specialmotion graphis
generatedrom labeleddataandthenboundto a nite statemachine
with similar labels. At run-time,charactebehaior is simply con-
trolled by switchingstates.We shaw thatit is possibleto generate
rich, controllablemotion without the needfor deepplanning. We
demonstratehat, when appliedto aninteractve ghting testbed,
simplestate-switchingontrollersmay be codedintuitively to cre-
atevariouseffects.
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1 Introduction

Motion graphsprovide ameandor re-usingmotioncapturedataby
building transitionshetweermotionsegmentsandforming atightly
connectechetwork of movements.This network, or graph,allows
endlessseamlessnotion to be generatedrom a nite collection
of data. However, the control methodsby which the motion graph
is traversedremainlimited becausehe structureof graphis often
too denseto performdeepplanning.A large branchingfactorfor a
motion graph,which is desirablefor building varietyinto the nal
motion, is at oddswith the needto nd pathsquickly throughthe
graphto accomplisha given goal. Previous techniquesgyenerally
provide the meandor control by performinglocal searcheso dis-
cover longerpathsthroughthe graph.We take a differentapproach
by re-framingthe control problemas a seriesof high-level deci-
sions,speci cally focusingon situationswhereplanningis not as
importantasintelligent, responsie behaior. This behaior is re-
guiredof charactershatareengagedin highly interactve actiities,
suchas ghting.

We introducethe “state-annotatethotiongraph’, anovel, dualrep-
resentationwherethe motiongraphis automaticallyembeddednto
a nite statemachingFSM)thatencapsulatelsigh-level behaiors.
The usageof sucha representatiomllows for actionto be consid-
eredattwo levels: astheindividualnodeactive in themotiongraph;
and as the behaior that exists within the statemachine. Under
this dualrepresentationye cangive directionat the behaior level
while the systemgeneratesmoothand varied motion at the level
of the motion capturedata. Unlike previous efforts that combine
FSM and motion capture[Lau and Kuffner 2005], our technique
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Figurel: Scenegeneratedvith state-annotatechotiongraph

hasfar fewer restrictionson the motiongraphtraversal. For exam-
ple, our systemmay generatea motion capturepaththat connects
several nodesto accomplisha single FSM transition. For control,
we presenta methodfor combiningusercodedheuristicsto yield
variouseffects. Becauseno planningis necessargt run-time,our
systemis capableof interacte rates.

We shawv our resultsusing the testbedof martial arts ghting (as
seenin Figure 1) which is valuablein settingssuchas electronic
gamesandcrowd generatiorfor specialeffects. Ourresultsinclude
basiclocomationin the form of shadowing where an opponent
maintainsadesireddistanceandfacingdirectionrelative to another
ghter, aswell as ghting actionsfor attackinganddefendingin a
ghting match.

2 Background

Schoedland colleaguesintroducedvideo textures as a mean of
reusingprerecordednotionsequenceby rearrangingagndconnect-
ing video clips basedon visual similarity [Schoedlet al. 2000].
Shortly afterward, several researchgroups simultaneouslypro-
posedsimilar graph-basedpproachesimed at motion capture
reuse[Arikan and Forsyth 2002; Kovar et al. 2002a;Lee et al. ]
Thesetechniquesusea similarity metricto nd transitionswithin
amotionlibrary basedon visual quality andphysically basedcon-
straints.Somesemi-automati@approachegor building morestruc-
turedmotiongraphshave sincebeenproposedGleicheretal. 2003;
LauandKuffner 2005]in which motionsaregroupednto behaior
states)argely by hand. Arikan andcolleaguesalsoproposeanno-
tating a motion databasendusinglabelsto describea desiredac-
tion, whichis thenbuilt usingdynamicprogrammindArikan etal.
2003].

Our work in state-annotatethotion graphsis relatedto the abose

efforts, but differsin thatwe integrateannotatiorwithin themotion

graphdatastructure.Onecontrikution is thusin providing context

in the form of behaviorlabelsfor character motionso thatit may
be usedto guide the constructionand deceasethe compleity of

themotiongraph(e.g.by pruningunwantedtransitionsandunused
nodes.)To accomplishthis goal, our systemusescontrolinforma-

tion provided by the userin theform of a nite statemachineand
annotatedstatelabelsfrom the sourcemotionto chooseappropri-
atetransitionsfor the motion graph. We contrastthis with others'

effortsin building amotiongraphfrom unlabeledmnotions.

Searchinga motion graphof ary substantiadepthis problematic



dueto thehigh branchfactorof the graphandthe shortdurationof
mary nodesfoundin the graph. This problemhasbheenaddressed
by previous efforts using adhocroutinesto extend the planning
horizon. For example,Schoedland Essa[2002] precomputemo-
tion pathsfor videospritesusingsubsequenceplacementArikan
andForsyth[2002] arrangemotionsinto a hierarcly of clustersof-
ine and performplanningover themat run time. Choi and col-
leagueg§2003] useroadmapconstructionatechniquethatstitches
togethershortermotion segmentsto ful Il the constraintsor each
leg of a path. Lau andKuffner [2005] suggestimiting the branch-
ing with a highly structuredmotion graph built manually from
hand-sgmentedclips. Kuffner's resultsfor long-rangepath plan-
ning usingA* or beamsearchare ordersof magnitudefasterthan
searchcomparedvith a generaimotiongraph.In contrastour ap-
proachusesan automaticallygeneratednotion graphandfocuses
on controlling high-level behaior transitionsusing precomputed
pathsbetweenstates. At run-time, we performno path planning
andinsteadcontrol the charactemwith shallav, depth-limitedlocal
search.

We demonstrateour resultsusing interactve virtual ghters and
ghting data. Closeto this domainaretwo efforts focusedspeci -
cally on ghting. In [Lee andLee 2004],reinforcementearningis
usedto pre-computenotionpathsfor ghting behaiors. Thiswork
is complementaryo our approactpresentedn this paper Rather
thanlookingfor optimalpathsfor individual behaiors, wefocuson
high-level controlfor our characteandaimto createa e xible con-
trol system(drivenby a nite statemachine)hatmaybe modi ed
at runtime. Graepeland colleague42005] proposea mechanism
for learninga policy for ghting within a x edvideogamesetting
whereacharacters pit againstaheuristic-codedghter. They focus
on the problemof optimizing the transitionselectionfrom a small
setof choiceswithin thegames existing hand-crafteanotiongraph
(akamovetred. Ourwork is similar to theirs,thoughwe general-
ize control to aricher and morediversesetof motions,which are
connectedautomaticallyin the state-annotateshotiongraph.

3 State-Annotated Motion Graphs

Behavior statemachinessuchasthe examplein Figure 2a, area
simpleand e xible framework for charactecontrolandaretheba-
sisof mary commercialanimationsystemsMost oftenthesestate
machinesarebuilt by handwith thefollowing layers:(1) thestruc-
tureis choserbasedn the goalof theapplication;(2) thebehaior
statesare populatedwith appropriateanimationsegments;and(3)
transitionsare craftedto move betweemanimationsequencesThe
power of the approachcomesfrom the fact that the statedescrip-
tion (Layer 1) is usuallyde ned in a straightforvard mannerwith
semantianeaningsuchas“move forward” or “turn left” leadingto
intuitive statede nitions. And Layer2 canoftenbe populateceas-
ily with animationgakenfrom motioncapture But Layer3is more
dif cult to generatepften donein a nave mannerwith clean-up
left to thediscretionof a humananimator Evenwhenhigh quality
motion captureis employed for behaiors, transitionscanreduce
the overall quality if they include unwantedartifactsdueto poor
construction.Thus,the numberof animationgncludedin the state
machineis oftenlimited in orderto keepthe numberof transitions
requiredto a minimum. This canleadto repetitve, uninteresting
motion. In contrast,motion graphsautomatethe processof tran-
sitioning from onemotion clip to anotherand may combinelarge
andrich databasesf motion with seamlessransitions. However,
animationproducedfrom a motion graph,sayby a randomwalk,
canbe nonsensicabecauséigh-level contet is missing. And as
pointedoutin thebackgroundectiongeneraktontrolandplanning
for motiongraphsremainsanopenproblem.

We combinethesetwo techniquesnto a singlerepresentatiorthe
state-annotateshotiongraph. |t offershigh-level taskspeci cation,
andwith it, the constrainteededo producemeaningfulmotions
while simultaneouslyupholdingvisual continuity This continu-
ity is madepossibleby automaticallygeneratednotion graph-like
transitions.In comparison[Lau andKuffner 2005] constructtheir
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Figure2: (a) Fighterstate-machineg(b) State-transitionvith repre-
sentatve edgefrom motiongraphthatgo from locomotionstateto
attackstateshavn (blue,dottedarrons)

well-structurednotiongraphby handequialentto building a state
machineand choosingthe behaior motionsas well as the state
transitions.An importantdistinctionin their work is thatthey treat
the transitionas a narrow gatevay from stateto state. And even
thoughthey includemultiple motioncapturesxampleswithin asin-

gle behaior state they still aim to have all of theseclips startand
endon similar frames. State-annotatethotion graphsinclude no

suchrestrictionson the transitionsbetweenstatesas long as the
changen statelabelsmatcheghedesiredpattern.Thus,our transi-
tionsaremuchmorebroadlyde ned andcanbetraversedwith ary

of anumberof edgeswithin agivengraph(seeFigure2b). Also, un-

like Lau andKuffner's method,our approachallows motion-graph
transitionsfreely within the context of a single behaior stateas
long asthe statelabel doesnot change.The effect of thesediffer-

enceds theautomaticconstructiorof a controllablecharactemwith

alargerepetoireof motioncapture-drrenactions.

4 Graph Construction

State-annotatechotion graphscontaindual informationregarding
a behaior statediagramand a standardmotion graph. We de-
scribeone methodfor derwing this duality thoughthis methodis
notunique.To bagin, we muststartwith the FSM (asin Figure2a)
andanannotatednotiondatabaseontainingabeledbehaiorsthat
correspondo the desiredstatesn the FSM. In ourimplementation
we performthe labelingstepsimply by assigninga singlelabelto
completeles, suchas“locomotionactions”for alongrecordingof
anidling ghter. Note,noindividualclip segmentatioris necessary
Next, we follow an existing method[Kovar et al. 2002a]to con-
structabasicmotiongraph,saving theannotatioriabelinformation
during the process.However, we modify the existing algorithmto
throw outall motiongraphedgesvhich arenotallowedin the FSM
(e.g. transitionsfrom attackto evadein our ghting example.) As
Kovar and his colleaguesdescribe we also computethe strongly
connecteccomponentgSCCs)of the motiongraph.In anSCCas
de nedby Tarjan[1972],ary nodecanreachary othernodewithin
the samecomponent. We take advantageof this propertyof the
SCCin subsequenstepsof our construction. Finally, the system
chooseshelargestSCCanddiscardsany unusednotionnodes.

To strengtherthe utility andresponsienessof the state-annotated
motion graph,we de ne two additionalpre-processingteps.The
rst is to guaranteselftransitionsatthebehaior (FSM)level. The
goalof performingthis stepis to allow a characteto remainwithin

a single behavior statewithout the needfor exiting the state. In
FSMs, self-transitioningedgesare useful for commonbehaiors
suchasthelocomotionbehaior in our ghting example.To com-
puteabehaior-level, selftransitionfrom ary givenstate s, we nd
SCCsfor all nodeswith statelabels. Note,eachSCCwill guar
anteeself transitioningby de nition. We save the largestof these



SCCsandthrow out the remainingnodes. To ensureconsisteny,
we rerunthe SCCsubroutineontheoverallmotiongraphto remove
ary deadendspotentiallyintroducedduring the productionof the
selftransitionfor states.

Next, weincreaseheresponsienes®f thecharacteby performing
someofine search.To ensuretimely accesof certainbehaiors,
we introducethe notion of fully connectedransitionswhich guar
anteepathsfrom every sourcenodeto every tamget node. In the
constructionof our ghting charactersye found suchfully con-
nectednodesto be useful for increasingavailability of “attack”
and “evade” behaiors. In our statemachinein Figure 2a, fully
connectedransitionedgesare denotedby dashedines; standard
transitionedgesaresolid. Pre-processinépr fully connectedran-
sitionsrequiresthe searchfor pathsfrom eachsourcenodeto all
target nodes. SCCagain providesa guaranteehat somepath ex-
ists, but giventhatour motiongraphlik ely includesmultiple paths,
we searchfor the temporallyshortestpath betweenthe nodes. To
accomplishthis goal, we employ dynamic-programmingthough
ary methodwould be sufcient) andstorethe found pathswith the
motiongraphnode. Theresultof this preprocessingtepis that, at
runtime the quidkestpathto anynodein thedesiedstateis imme-
diatelyavailable withoutsearh.

5 Control

Oncethe state-annotateshotiongraphis constructedthe usercan
immediatelycontrolthe charactes behaior manuallyby selecting
the desiredstatebehaior. This will resultin a characteicontinu-
ously remainingin thatstateif thereis a self-transitioningedgeor

transitioningto thatstateuntil thedesiredstateis switchedto anew

behaior.

To automatecontrol, sayfor a non-playercharacterwe proposea
straightforvardhierarchicakontrolroutinewhichis composef a
setof activity controllers,anda “supervisor"which prioritizesthe
actiities to accomplisha high-level goal. In this simple scheme,
the supervisorpolls theindividual controllerswhich determinethe
bestpathin the motion graphthat will satisfy their unique sub-
task. They reportto the supervisomnassessmemdf their ability to
achieve their subtaskandthe supervisorselectsthe actwity based
onapriority schemeandthe systemaddsthemotioncorresponding
to the selectecpathto the charactes animationqueue.

Theactuvity controllerscorrespondo thebehaiors of theFSMand
canbe designedrom simplerules. For example,to walk forward,
the controllernearlybe given a desiredspeedandthe actiity con-
troller would comparethe desiredspeedwith the possiblespeeds
for the nodesandchoosethe bestnode. A slightly more sophisti-
catedcontrollerthatmanage$oth speedanddirectionwould need
to reconcilebetweenthe two subgoalsbut the processof building
the controlleris asstraightforvard asthe rst stepin the construc-
tion of ary FSM (asoutlinedin Section3.) In our experimentsthe
activity controllersarebuilt from suchbasicrules. For examplein
ghting, for locomotion we developabehaior to shadowanoppo-
nent. Shadaving is acommon ghting activity wherethe goalsare
to keeptheopponentn front of the ghter andatadesireddistance.
Our rulesfor shadeving matchthesegoals. During the shadaving
actiity, the beststep(node)to take is the greedyonewhich mini-
mizesthe errorsassociateavith the distanceandfacingdirection.
To leveragethe two subgoalsa weightedsumof the errorsis com-
puted.If we employ this simplecontrolleralone we generate pair
of charactersvhich shadev andcircle eachother asif anticipating
a ght. To createanimationof ghting, we developedonly three
actiity controllers,one eachfor shadwaving, attacking,and evad-
ing. More detailsaboutthe speci c controllersappeatin the next
section.

Activity controllersarecombinedby a supervisorycontrolsystem.
We foundthata simple supervisowassufcient for ghting - we
merely prioritize the actiities basedon the following ordering:
evade; attack;thenshadav. The supervisorthuspolls eachactiv-
ity controllerin turn andselectshe rst actiity thatis reasonable

Attack | Evade | Locom.
Numberof Nodes 76 54 702
Ave. Length(sec) 2.57 1.30 0.19
Ave. Time from Locom. (sec) || 0.04 0.05 -

Table 1: Fighting state-annotatedhotion graph statistics: Total
numberof nodesn eachstate averagdengthof nodesandaverage
time from ary locomotionnodeto eachattackor evadenode.

basedon the given ordering, wherethe default behaior appears
last. The assessmerfbr whatis reasonablés application-speci c,
e.g.theevadeactvity is only employedif thecharacteis too close
to the opponent. The power of the state-annotateanotion graph
is that the supervisorcontwoller can be thoughtof (and coded)as
if it is executingsolelyon the FSM's statediagram, eventhoughit
is traverising precomputegbathsat the motion-gaphlevel. Thein-
dividual actiity controllerswork betweerthe two representations
but eventhesecontrollersdo not performary deepsearch.Thisis
becauseclearly de ned ruleshelpto nd the optimal path, which
givesthebestactionfor a givensetof conditions.

6 Implementation and Results for Fighting

To shav our results,we implementedghting controllersthatuse
state-annotatechotion graphspopulatedwith several minutesof
(solo) martial arts movementdata. The high-level statediagram
for ghting, shown in Figure2a, speci escharactebehaior. Our
implementationfor ghting includesthree primary sections: (1)
the state-annotatethotion graph, (2) the actwvity controllers,and
(3) the run-time system. Constructingthe graphis expectedto
be doneonceoff-line, andtakes several hoursof computationon
our database.Developmentof control requiressomedesignand
parametetuning (e.g. weighting competingsubgoalsproperly)
which was the mostlabor intensve stageof the implementation.
Theon-linesystenrunsat 15fpsfor two charactersisingan AMD
Athlon64 CPUwith 2 Gigabytesof memory

For ghting, therearemary possiblefactorsfor successfuhttack
and evasion, but speedplays a uniformly importantrole and we
usedthis asa unifying principle in the designof our actiity con-
trollers. As Figure2ashaws, thelocomotionstate whichis usedfor
the shadwving actvity, hasa self-transitioningedgeandtwo fully-
connecteckdgesto attackand evadestates. Thus, we computea
local SCCfor thelocomotionstateandappropriatgshortestpaths
from all locomotionnodesto all attackandevadenodesto uphold
ourde nition of “fully connected”Ourcomputatiorof theshortest
pathis de ned by thecumulative delayof all nodesin the pathand
is intendedo give the controllerthemostresponsie controlspace.
Somestatistican regardsto responsienessppeain Tablel.

To assesshe valueof selectinga speci ¢ pathfor ary actvity, we
usedthe following metricsemployed at the statedfuture predicted
time:

Attack. Advancetime to the rst contactof the attackand
measurethe distancebetweenthe attackbody ( st or foot)

anddesignatedamets(head chest,or abdomen.)

Evade. Advanceto the endof the evadeactionandcompute
thedistancebetweerthe ghter andtheopponent.

Shadawv (default activity). Advanceto the endof the loco-
motionnodeandassessjuality basedon the accurag of two
sub-goalsdistanceandrelative facingdirectioncomputedat
theendtime of the nodesheingtested.

In eachof thesemetrics,a lookaheads performed. To male this
prediction,we advanceboth charactersn their currentpath. Al-

thoughthis doesnot guarantea perfectpredictionsincethe other
charactes controllermight changéts pathbeforethatfuturetime,
we foundthis asareasonabl@redictorof future state.



Figure3: Left andright columns:Two ghting interactiongyener
atedusingourtechnique

The priority betweenactvities is a single, easily-tunablgparame-
ter which may be modulatedto createuniqueeffects. For exam-
ple, whenthe characteis assignedvith a heary weightingfor the
evadeactiity, theresultis a ghter thatactsmoredefensiely. Con-
verselywhenattackis givenpriority overevade theresultis amore
aggressie ghter. We shav a result pitting both ghting styles
againstoneanotherin the accompaying animations.In addition,
we shav ananimationwherethe attackbehaior labelis (trivially)
splitinto two labels,onefor punchingandonefor kicking attacks.
In this casewe vary the priority of thetwo attackactuities to both
extremes.Theresult,asonemightexpect,is a ghter which prefers
to punchversusonewhich only kicks. The granularityof the state
labelsis up to the discretionof the animator Thatis, if warranted
by the application,single attack motions (e.g. left hooks)could
be labeledasuniquebehaior states.More detailsandresultscan
be foundin the primary authors thesisalongwith preliminaryre-
sultson usingreinforcementearningto nd controllersautomati-
cally [Chiu. 2007].

Interactve ghting is dif cult becauseseveralfactorsareinvolved
simultaneously We focus on behaior selectionusing a motion
graph,but otherfactors- suchas precisecollisions or modifying
the behaior motion on the y - are somevhat orthogonalto the
emphasi®f ourwork. To producetheanimationghatareincluded
with the paper(as shovn in Figures1 and 3), we perform post-
processingn the form of blendingandfoot-skateclean-upto im-
prove the quality of the nal motion. Foot skateis introduceddur-
ing motiongraphtransitionsandwe remove somefoot skateusing
a naive algorithm. We also add dynamicresponseas described
by [Zordanet al. 2005],to selectimpactsto increasethe perceved
interactionof the ghters. In addition,morere ned postprocessing
would certainlyimprove the motion further: e.g. for betterfoot-
skatecleanup [Kovar et al. 2002b; Ikemotoet al. 2005], and for
moreprecisemaotioncontrol[Lee andLee2004]. But thesemodi -
cationsdonotaffectthebehaior controlof the ghters, andremain
outsidethe scopeof this paper

7 Discussion and Conclusion

As we perform experimentationfor ghter charactemotion, our

approachwill bepowerfulin anumberof otherdomainsgspecially
in domainswherelarge numbersof interactingcharactersreto be
controlled. The constructionof state-annotatechotion graphsis

only limited by theneedto assigrstatelabelsandto de ne acoher

entFSMfrom thoselabels.Furtherassumptionarethatampledata
is availablefor the behaiors andthata denselyconnectednotion

graphmaybe generatedrom the motiondata.Giventhesefactors,
charactemotionswhereinteractionis prevalentshouldbe readily
controlledwith our approach.

We presenta novel techniquefor controlling interactve ghting
charactersising state-annotatenotion graphs. The bene t of our
approachstemdrom theability to generateontrollable jnteractve
charactershatmove basedon motion capturedata. The novelty of
our approacHies in the dual natureof our representatiotvecause
it affords high-level controlvia a FSM andmotion-captureanima-
tion dueto the motion graph. We introducea simple hierarcly of
heuristicgto controlfor ghting. This methodof controlis particu-
larly applicableto settingssuchas ghting wheredeepplanningis
replacedy responsieness.
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