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Abstract

Motion graphshave gainedpopularity in recentyearsasa means
for re-usingmotioncapturedataby connectingpreviouslyunrelated
segmentsof a recordedlibrary. Currenttechniquesfor controlling
movementof acharactervia motiongraphshavelargelyfocusedon
pathplanningwhich is dif�cult dueto the densityof connections
foundon thegraph.We introduce“state-annotatedmotiongraphs,”
a novel techniquewhich allows high-level controlof characterbe-
havior by usinga dual representationconsistingof both a motion
graphanda behavior statemachine.This specialmotion graphis
generatedfrom labeleddataandthenboundto a�nite statemachine
with similar labels.At run-time,characterbehavior is simply con-
trolled by switchingstates.We show that it is possibleto generate
rich, controllablemotion without the needfor deepplanning. We
demonstratethat, whenappliedto an interactive �ghting testbed,
simplestate-switchingcontrollersmaybecodedintuitively to cre-
atevariouseffects.
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1 Intr oduction

Motion graphsprovideameansfor re-usingmotioncapturedataby
building transitionsbetweenmotionsegmentsandformingatightly
connectednetwork of movements.This network, or graph,allows
endless,seamlessmotion to be generatedfrom a �nite collection
of data.However, thecontrolmethodsby which themotiongraph
is traversedremainlimited becausethe structureof graphis often
too denseto performdeepplanning.A largebranchingfactorfor a
motiongraph,which is desirablefor building variety into the �nal
motion, is at oddswith the needto �nd pathsquickly throughthe
graphto accomplisha given goal. Previous techniquesgenerally
provide themeansfor controlby performinglocal searchesto dis-
cover longerpathsthroughthegraph.We takeadifferentapproach
by re-framingthe control problemas a seriesof high-level deci-
sions,speci�cally focusingon situationswhereplanningis not as
importantasintelligent, responsive behavior. This behavior is re-
quiredof charactersthatareengagedin highly interactiveactivities,
suchas�ghting.

Weintroducethe“state-annotatedmotiongraph,” anovel, dualrep-
resentationwherethemotiongraphis automaticallyembeddedinto
a�nite statemachine(FSM)thatencapsulateshigh-level behaviors.
Theusageof sucha representationallows for actionto beconsid-
eredattwo levels:astheindividualnodeactivein themotiongraph;
and as the behavior that exists within the statemachine. Under
this dualrepresentation,we cangive directionat thebehavior level
while the systemgeneratessmoothandvariedmotion at the level
of the motion capturedata. Unlike previous efforts that combine
FSM andmotion capture[Lau andKuffner 2005], our technique
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Figure1: Scenegeneratedwith state-annotatedmotiongraph

hasfar fewer restrictionson themotiongraphtraversal.For exam-
ple, our systemmay generatea motion capturepaththat connects
several nodesto accomplisha singleFSM transition. For control,
we presenta methodfor combininguser-codedheuristicsto yield
variouseffects. Becauseno planningis necessaryat run-time,our
systemis capableof interactive rates.

We show our resultsusing the testbedof martial arts �ghting (as
seenin Figure1) which is valuablein settingssuchaselectronic
gamesandcrowd generationfor specialeffects.Ourresultsinclude
basic locomotion in the form of shadowing, wherean opponent
maintainsadesireddistanceandfacingdirectionrelative to another
�ghter, aswell as�ghting actionsfor attackinganddefendingin a
�ghting match.

2 Backgr ound

Schoedland colleaguesintroducedvideo textures as a meanof
reusingprerecordedmotionsequencesby rearrangingandconnect-
ing video clips basedon visual similarity [Schoedlet al. 2000].
Shortly afterward, several researchgroups simultaneouslypro-
posedsimilar graph-basedapproachesaimed at motion capture
reuse[Arikan andForsyth2002; Kovar et al. 2002a;Lee et al. ]
Thesetechniquesusea similarity metric to �nd transitionswithin
a motionlibrary basedon visualquality andphysically basedcon-
straints.Somesemi-automaticapproachesfor building morestruc-
turedmotiongraphshavesincebeenproposed[Gleicheretal.2003;
LauandKuffner2005]in whichmotionsaregroupedinto behavior
states,largely by hand. Arikan andcolleaguesalsoproposeanno-
tatinga motiondatabaseandusinglabelsto describea desiredac-
tion, which is thenbuilt usingdynamicprogramming[Arikan etal.
2003].

Our work in state-annotatedmotion graphsis relatedto the above
efforts,but differsin thatwe integrateannotationwithin themotion
graphdatastructure.Onecontribution is thusin providing context
in the form of behaviorlabelsfor charactermotionso that it may
be usedto guidethe constructionand decreasethe complexity of
themotiongraph(e.g.by pruningunwantedtransitionsandunused
nodes.)To accomplishthis goal,our systemusescontrol informa-
tion providedby theuserin theform of a �nite statemachine,and
annotatedstatelabelsfrom the sourcemotion to chooseappropri-
atetransitionsfor themotiongraph. We contrastthis with others'
efforts in building amotiongraphfrom unlabeledmotions.

Searchinga motion graphof any substantialdepthis problematic



dueto thehigh branchfactorof thegraphandtheshortdurationof
many nodesfound in thegraph.This problemhasbeenaddressed
by previous efforts using adhocroutinesto extend the planning
horizon. For example,SchoedlandEssa[2002] precomputemo-
tion pathsfor videospritesusingsubsequencereplacement.Arikan
andForsyth[2002] arrangemotionsinto a hierarchy of clustersof-
�ine andperformplanningover themat run time. Choi andcol-
leagues[2003]useroadmapconstruction,a techniquethatstitches
togethershortermotionsegmentsto ful�ll theconstraintsfor each
leg of a path.Lau andKuffner [2005] suggestlimiting thebranch-
ing with a highly structuredmotion graph built manually from
hand-segmentedclips. Kuffner's resultsfor long-rangepathplan-
ning usingA* or beamsearchareordersof magnitudefasterthan
searchcomparedwith a generalmotiongraph.In contrast,our ap-
proachusesan automaticallygeneratedmotion graphandfocuses
on controlling high-level behavior transitionsusing precomputed
pathsbetweenstates. At run-time,we performno path planning
andinsteadcontrol thecharacterwith shallow, depth-limitedlocal
search.

We demonstrateour resultsusing interactive virtual �ghters and
�ghting data.Closeto this domainaretwo efforts focusedspeci�-
cally on �ghting. In [Lee andLee2004],reinforcementlearningis
usedto pre-computemotionpathsfor �ghting behaviors. Thiswork
is complementaryto our approachpresentedin this paper. Rather
thanlookingfor optimalpathsfor individualbehaviors,wefocuson
high-level controlfor ourcharacterandaimto createa�e xible con-
trol system(drivenby a �nite statemachine)thatmaybemodi�ed
at runtime. Graepelandcolleagues[2005] proposea mechanism
for learninga policy for �ghting within a �x edvideogamesetting
whereacharacteris pit againstaheuristic-coded�ghter. They focus
on theproblemof optimizing the transitionselectionfrom a small
setof choiceswithin thegame'sexistinghand-craftedmotiongraph
(akamovetree). Our work is similar to theirs,thoughwe general-
ize control to a richer andmorediversesetof motions,which are
connectedautomaticallyin thestate-annotatedmotiongraph.

3 State-Annotated Motion Graphs

Behavior statemachines,suchasthe examplein Figure2a, area
simpleand�e xible framework for charactercontrolandaretheba-
sisof many commercialanimationsystems.Most oftenthesestate
machinesarebuilt by handwith thefollowing layers:(1) thestruc-
tureis chosenbasedon thegoalof theapplication;(2) thebehavior
statesarepopulatedwith appropriateanimationsegments;and(3)
transitionsarecraftedto move betweenanimationsequences.The
power of the approachcomesfrom the fact that the statedescrip-
tion (Layer1) is usuallyde�ned in a straightforwardmannerwith
semanticmeaningsuchas“move forward” or “turn left” leadingto
intuitive statede�nitions. And Layer2 canoftenbepopulatedeas-
ily with animationstakenfrom motioncapture.But Layer3 is more
dif�cult to generate,often donein a naive mannerwith clean-up
left to thediscretionof a humananimator. Evenwhenhigh quality
motion captureis employed for behaviors, transitionscan reduce
the overall quality if they includeunwantedartifactsdue to poor
construction.Thus,thenumberof animationsincludedin thestate
machineis oftenlimited in orderto keepthenumberof transitions
requiredto a minimum. This canleadto repetitive, uninteresting
motion. In contrast,motion graphsautomatethe processof tran-
sitioning from onemotion clip to anotherandmay combinelarge
andrich databasesof motion with seamlesstransitions.However,
animationproducedfrom a motion graph,sayby a randomwalk,
canbe nonsensicalbecausehigh-level context is missing. And as
pointedout in thebackgroundsection,generalcontrolandplanning
for motiongraphsremainsanopenproblem.

We combinethesetwo techniquesinto a singlerepresentation,the
state-annotatedmotiongraph.It offershigh-level taskspeci�cation,
andwith it, theconstraintsneededto producemeaningfulmotions
while simultaneouslyupholdingvisual continuity. This continu-
ity is madepossibleby automaticallygeneratedmotiongraph-like
transitions.In comparison,[Lau andKuffner 2005]constructtheir

Figure2: (a)Fighterstate-machine.(b) State-transitionwith repre-
sentativeedgesfrom motiongraphthatgofrom locomotionstateto
attackstateshown (blue,dottedarrows)

well-structuredmotiongraphby handequivalentto building astate
machineand choosingthe behavior motionsas well as the state
transitions.An importantdistinctionin their work is thatthey treat
the transitionas a narrow gateway from stateto state. And even
thoughthey includemultiplemotioncaptureexampleswithin asin-
gle behavior state,they still aim to have all of theseclips startand
endon similar frames. State-annotatedmotion graphsincludeno
suchrestrictionson the transitionsbetweenstatesas long as the
changein statelabelsmatchesthedesiredpattern.Thus,our transi-
tionsaremuchmorebroadlyde�ned andcanbetraversedwith any
of anumberof edgeswithin agivengraph(seeFigure2b). Also,un-
like Lau andKuffner's method,our approachallows motion-graph
transitionsfreely within the context of a single behavior stateas
long asthestatelabeldoesnot change.Theeffect of thesediffer-
encesis theautomaticconstructionof a controllablecharacterwith
a largerepetoireof motioncapture-drivenactions.

4 Graph Construction

State-annotatedmotiongraphscontaindual informationregarding
a behavior statediagramand a standardmotion graph. We de-
scribeonemethodfor deriving this duality thoughthis methodis
not unique.To begin, we muststartwith theFSM (asin Figure2a)
andanannotatedmotiondatabasecontaininglabeledbehaviorsthat
correspondto thedesiredstatesin theFSM.In our implementation
we performthe labelingstepsimply by assigninga singlelabel to
complete�les, suchas“locomotionactions”for a longrecordingof
anidling �ghter. Note,noindividualclip segmentationis necessary.
Next, we follow an existing method[Kovar et al. 2002a]to con-
structabasicmotiongraph,saving theannotationlabelinformation
during theprocess.However, we modify theexisting algorithmto
throw outall motiongraphedgeswhicharenotallowedin theFSM
(e.g. transitionsfrom attackto evadein our �ghting example.)As
Kovar andhis colleaguesdescribe,we alsocomputethe strongly
connectedcomponents(SCCs)of themotiongraph. In anSCCas
de�nedby Tarjan[1972],any nodecanreachany othernodewithin
the samecomponent. We take advantageof this propertyof the
SCCin subsequentstepsof our construction.Finally, the system
choosesthelargestSCCanddiscardsany unusedmotionnodes.

To strengthentheutility andresponsivenessof thestate-annotated
motiongraph,we de�ne two additionalpre-processingsteps.The
�rst is to guaranteeself transitionsat thebehavior (FSM)level. The
goalof performingthisstepis to allow acharacterto remainwithin
a single behavior statewithout the needfor exiting the state. In
FSMs, self-transitioningedgesare useful for commonbehaviors
suchasthelocomotionbehavior in our �ghting example.To com-
puteabehavior-level, self transitionfrom any givenstate,s, we�nd
SCCsfor all nodeswith statelabel s. Note, eachSCCwill guar-
anteeself transitioningby de�nition. We save the largestof these



SCCsandthrow out the remainingnodes.To ensureconsistency,
wereruntheSCCsubroutineontheoverallmotiongraphto remove
any deadendspotentiallyintroducedduring the productionof the
self transitionfor states.

Next, weincreasetheresponsivenessof thecharacterbyperforming
someof�ine search.To ensuretimely accessof certainbehaviors,
we introducethenotionof fully connectedtransitionswhich guar-
anteepathsfrom every sourcenodeto every target node. In the
constructionof our �ghting characters,we found suchfully con-
nectednodesto be useful for increasingavailability of “attack”
and “evade” behaviors. In our statemachinein Figure 2a, fully
connectedtransitionedgesaredenotedby dashedlines; standard
transitionedgesaresolid. Pre-processingfor fully connectedtran-
sitionsrequiresthe searchfor pathsfrom eachsourcenodeto all
target nodes.SCCagain providesa guaranteethat somepathex-
ists,but giventhatourmotiongraphlikely includesmultiplepaths,
we searchfor the temporallyshortestpathbetweenthe nodes.To
accomplishthis goal, we employ dynamic-programming(though
any methodwould besuf�cient) andstorethefoundpathswith the
motiongraphnode.Theresultof this preprocessingstepis that,at
runtime, thequickestpathto anynodein thedesiredstateis imme-
diatelyavailable, withoutsearch.

5 Contr ol

Oncethestate-annotatedmotiongraphis constructed,theusercan
immediatelycontrolthecharacter'sbehavior manuallyby selecting
the desiredstatebehavior. This will result in a charactercontinu-
ously remainingin thatstateif thereis a self-transitioningedgeor
transitioningto thatstateuntil thedesiredstateis switchedto anew
behavior.

To automatecontrol,sayfor a non-playercharacter, we proposea
straightforwardhierarchicalcontrolroutinewhichis composedof a
setof activity controllers,anda “supervisor”which prioritizesthe
activities to accomplisha high-level goal. In this simplescheme,
thesupervisorpolls the individual controllerswhich determinethe
bestpath in the motion graphthat will satisfy their uniquesub-
task.They reportto thesupervisoranassessmentof their ability to
achieve their subtaskandthe supervisorselectsthe activity based
onapriority schemeandthesystemaddsthemotioncorresponding
to theselectedpathto thecharacter's animationqueue.

Theactivity controllerscorrespondto thebehaviorsof theFSMand
canbedesignedfrom simplerules. For example,to walk forward,
thecontrollernearlybegivena desiredspeedandtheactivity con-
troller would comparethe desiredspeedwith the possiblespeeds
for the nodesandchoosethe bestnode. A slightly moresophisti-
catedcontrollerthatmanagesbothspeedanddirectionwould need
to reconcilebetweenthe two subgoalsbut the processof building
thecontrolleris asstraightforwardasthe�rst stepin theconstruc-
tion of any FSM (asoutlinedin Section3.) In our experiments,the
activity controllersarebuilt from suchbasicrules. For examplein
�ghting, for locomotion,wedevelopabehavior to shadowanoppo-
nent.Shadowing is a common�ghting activity wherethegoalsare
to keeptheopponentin front of the�ghter andatadesireddistance.
Our rulesfor shadowing matchthesegoals.During theshadowing
activity, thebeststep(node)to take is thegreedyonewhich mini-
mizestheerrorsassociatedwith thedistanceandfacingdirection.
To leveragethetwo subgoals,a weightedsumof theerrorsis com-
puted.If weemploy thissimplecontrolleralone,wegenerateapair
of characterswhichshadow andcircleeachother, asif anticipating
a �ght. To createanimationof �ghting, we developedonly three
activity controllers,oneeachfor shadowing, attacking,andevad-
ing. More detailsaboutthe speci�c controllersappearin the next
section.

Activity controllersarecombinedby a supervisorycontrolsystem.
We found thata simplesupervisorwassuf�cient for �ghting - we
merely prioritize the activities basedon the following ordering:
evade;attack;thenshadow. The supervisorthuspolls eachactiv-
ity controllerin turn andselectsthe �rst activity that is reasonable

Attack Evade Locom.
Numberof Nodes 76 54 702
Ave. Length(sec) 2.57 1.30 0.19

Ave. Time from Locom.(sec) 0.04 0.05 –

Table 1: Fighting state-annotatedmotion graph statistics: Total
numberof nodesin eachstate,averagelengthof nodes,andaverage
time from any locomotionnodeto eachattackor evadenode.

basedon the given ordering,wherethe default behavior appears
last. Theassessmentfor what is reasonableis application-speci�c,
e.g.theevadeactivity is only employedif thecharacteris tooclose
to the opponent.Thepowerof the state-annotatedmotiongraph
is that the supervisorcontroller can be thoughtof (and coded)as
if it is executingsolelyon theFSM's statediagram,eventhoughit
is traversingprecomputedpathsat themotion-graphlevel. Thein-
dividual activity controllerswork betweenthe two representations
but eventhesecontrollersdo not performany deepsearch.This is
becauseclearly de�ned ruleshelp to �nd the optimal path,which
givesthebestactionfor agivensetof conditions.

6 Implementation and Results for Fighting

To show our results,we implemented�ghting controllersthat use
state-annotatedmotion graphspopulatedwith several minutesof
(solo) martial arts movementdata. The high-level statediagram
for �ghting, shown in Figure2a,speci�escharacterbehavior. Our
implementationfor �ghting includesthreeprimary sections: (1)
the state-annotatedmotion graph,(2) the activity controllers,and
(3) the run-time system. Constructingthe graph is expectedto
be doneonceoff-line, andtakesseveral hoursof computationon
our database.Developmentof control requiressomedesignand
parameter-tuning (e.g. weighting competingsubgoalsproperly)
which was the most labor intensive stageof the implementation.
Theon-linesystemrunsat15fps for two charactersusinganAMD
Athlon64CPUwith 2 Gigabytesof memory.

For �ghting, therearemany possiblefactorsfor successfulattack
and evasion,but speedplays a uniformly importantrole and we
usedthis asa unifying principle in the designof our activity con-
trollers.As Figure2ashows,thelocomotionstate,whichis usedfor
theshadowing activity, hasa self-transitioningedgeandtwo fully-
connectededgesto attackandevadestates.Thus,we computea
localSCCfor thelocomotionstateandappropriate(shortest)paths
from all locomotionnodesto all attackandevadenodesto uphold
ourde�nition of “fully connected”.Ourcomputationof theshortest
pathis de�ned by thecumulative delayof all nodesin thepathand
is intendedto give thecontrollerthemostresponsivecontrolspace.
Somestatisticsin regardsto responsivenessappearin Table1.

To assessthevalueof selectinga speci�c pathfor any activity, we
usedthefollowing metricsemployedat thestatedfuturepredicted
time:

� Attack. Advancetime to the �rst contactof the attackand
measurethe distancebetweenthe attackbody (�st or foot)
anddesignatedtargets(head,chest,or abdomen.)

� Evade. Advanceto theendof theevadeactionandcompute
thedistancebetweenthe�ghter andtheopponent.

� Shadow (default activity). Advanceto the endof the loco-
motionnodeandassessquality basedon theaccuracy of two
sub-goals:distanceandrelative facingdirectioncomputedat
theendtimeof thenodesbeingtested.

In eachof thesemetrics,a lookaheadis performed.To make this
prediction,we advanceboth characterson their currentpath. Al-
thoughthis doesnot guaranteea perfectpredictionsincetheother
character's controllermight changeits pathbeforethatfuturetime,
we foundthisasa reasonablepredictorof futurestate.



Figure3: Left andright columns:Two �ghting interactionsgener-
atedusingour technique

The priority betweenactivities is a single,easily-tunableparame-
ter which may be modulatedto createuniqueeffects. For exam-
ple, whenthecharacteris assignedwith a heavy weightingfor the
evadeactivity, theresultis a�ghter thatactsmoredefensively. Con-
versely, whenattackis givenpriority overevade,theresultis amore
aggressive �ghter. We show a result pitting both �ghting styles
againstoneanotherin the accompanying animations.In addition,
we show ananimationwheretheattackbehavior label is (trivially)
split into two labels,onefor punchingandonefor kicking attacks.
In this case,we vary thepriority of thetwo attackactivities to both
extremes.Theresult,asonemightexpect,is a�ghter whichprefers
to punchversusonewhich only kicks. Thegranularityof thestate
labelsis up to thediscretionof theanimator. That is, if warranted
by the application,single attackmotions(e.g. left hooks)could
be labeledasuniquebehavior states.More detailsandresultscan
be found in theprimaryauthor's thesisalongwith preliminaryre-
sultson usingreinforcementlearningto �nd controllersautomati-
cally [Chiu. 2007].

Interactive �ghting is dif�cult becauseseveral factorsareinvolved
simultaneously. We focus on behavior selectionusing a motion
graph,but other factors- suchasprecisecollisionsor modifying
the behavior motion on the �y - are somewhat orthogonalto the
emphasisof ourwork. To producetheanimationsthatareincluded
with the paper(as shown in Figures1 and 3), we perform post-
processingin the form of blendingandfoot-skateclean-upto im-
prove thequality of the�nal motion. Foot skateis introduceddur-
ing motiongraphtransitionsandwe remove somefoot skateusing
a naive algorithm. We also add dynamicresponse,as described
by [Zordanet al. 2005],to selectimpactsto increasetheperceived
interactionof the�ghters. In addition,morere�ned postprocessing
would certainly improve the motion further: e.g. for betterfoot-
skatecleanup [Kovar et al. 2002b;Ikemotoet al. 2005], andfor
moreprecisemotioncontrol[LeeandLee2004].But thesemodi�-
cationsdonotaffect thebehavior controlof the�ghters, andremain
outsidethescopeof thispaper.

7 Discussion and Conc lusion

As we performexperimentationfor �ghter charactermotion, our
approachwill bepowerful in anumberof otherdomains,especially
in domainswherelargenumbersof interactingcharactersareto be
controlled. The constructionof state-annotatedmotion graphsis
only limited by theneedto assignstatelabelsandto de�ne acoher-
entFSMfrom thoselabels.Furtherassumptionsarethatampledata
is availablefor thebehaviors andthata denselyconnectedmotion
graphmaybegeneratedfrom themotiondata.Giventhesefactors,
charactermotionswhereinteractionis prevalentshouldbe readily
controlledwith ourapproach.

We presenta novel techniquefor controlling interactive �ghting
charactersusingstate-annotatemotion graphs.The bene�t of our
approachstemsfrom theability to generatecontrollable,interactive
charactersthatmove basedon motioncapturedata.Thenovelty of
our approachlies in the dual natureof our representationbecause
it affordshigh-level controlvia a FSM andmotion-captureanima-
tion dueto the motion graph. We introducea simplehierarchy of
heuristicsto controlfor �ghting. Thismethodof controlis particu-
larly applicableto settingssuchas�ghting wheredeepplanningis
replacedby responsiveness.
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