
A Novel Technique for Indexing Video Surveillance Data

 Eamonn Keogh Bhrigu Celly Chotirat Ann Ratanamahatana Victor Zordan

University of California - Riverside
Computer Science & Engineering Department

Riverside, CA 92521, USA
 {eamonn, bcelly, ratana, vbz }@cs.ucr.edu

Abstract

Recent worldwide events have renewed interest in the use
of video surveillance as a tool for private security, law
enforcement and military applications. After appropriate
feature extraction has taken place, most video
surveillance problems are reduced to the problem of
efficiently and robustly matching motion streams. Since
all natural motion typically has some variability in the
time axis, Dynamic Time Warping (DTW), a technique
that aligns the motion streams before calculating their
similarity, is typically used. However, DTW can only
address the problem of local scaling. As we demonstrate
in this work, uniform scaling may be just as important for
meaningful automatic analysis of video surveillance data
streams. In this work, we demonstrate a novel technique
to index of similarity search under uniform scaling. As we
will demonstrate, our technique is simple and intuitive,
and can achieve a speedup of 2 to 3 orders of magnitude
under realistic settings.

1. Introduction
Recent worldwide events have renewed interest in the use
of video surveillance as a tool for private security, law
enforcement and military applications. After appropriate
feature extraction has taken place, most video
surveillance problems are reduced to the problem of
efficiently and robustly matching motion streams (i.e.
time series).
The motivation for using this simple representation dates
back to the classic experiments by Johansson [13].
Johansson created films of humans that are complexly
blank except for a dozen or so light-points attached to
actors body. He discovered that even when presented with
such poor input information, people could instantly
identify the actions being performed. Later studies
showed simply by viewing these light points, people can
even identify the gender [20] and the emotional state [25]

of the actor. An additional pragmatic motivation for using
a time series representation of video is the relative ease
with which we can store, transmit and index time series.
Since all natural motion typically has some variability in
the time axis, Dynamic Time Warping (DTW), a
technique that aligns the motion streams before
calculating their similarity, is typically used [1].
However, DTW can only address the problem of local
scaling. As we demonstrate in this work, global or
uniform scaling may be just as important for meaningful
automatic analysis of video surveillance data streams.
For clarity, we illustrate the difference between local
scaling and uniform scaling in Figure 1.

Figure 1. (Top) Stills from the video surveillance gun problem, the
right hand is tracked, and converted into motion streams. (Bottom)
Some snippets from the Y-axis of the gun dataset.
I) We can attempt to match the Query A to the most similar
subsection of a longer reference dataset. II) Dynamic time warping
allows small, non-linear rescaling in the Y-axis to achieve a better fit.
III) Query B corresponds to a much quicker draw of the gun, and
DTW (IIII) is of little utility. By simply uniformly rescaling the query
to make it 34% longer (V), its true similarity (VI) to a subsection of
the reference sequence is revealed.

Query A

I II

III IIII

V VI

Reference
Sequence

Query B

Original
Query B

Query B, Rescaled

Reference
Sequence

Query A

I II

III IIII

V VI

Reference
Sequence

Query B

Original
Query B

Query B, Rescaled

Reference
Sequence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWVS’03, November 7, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-780-X/03/00011…$5.00.

The problem of efficiently indexing patterns in large time
series databases has attracted great interest in the database
[7][11]][[17], data mining [3][14][29], and information
retrieval communities [27]. However, the importance of
dealing with both uniform and local scaling does not
appear to have been fully understood. Typically, we find
that researchers that are interested in performance issues
use the simple Euclidean distance [3][7][11][14].
However, researchers that are application driven usually
understand that Euclidean distance is inappropriate for
most real world applications [1][10][12][28][32]. The
limitations of Euclidean distance stems from the fact that
it is very sensitive to distortions in the time axis. A partial
solution to this problem, Dynamic Time Warping (DTW),
essentially aligns the time axis before calculating the
Euclidean distance.
While dynamic time warping can only address the
problem of local scaling, uniform scaling may be just as
important in many domains, especially in biological and
biometric domains. For example, a recent paper by Hu
and Dannenberg [12] on the query-by-humming music
retrieval problem, noted the need to “search the database
with numerous time scaled versions of queries to cover a
reasonable range of queries”. While this work makes a
strong empirical argument for the necessity of uniform
scaling, it does not advance any technique to help
mitigate its time complexity.
There exists a handful of techniques that can support
similarity search under uniform scaling if the scaling
factor is known in advance [4][14]; however, in most
domains, it is unlikely that we know the scaling factor. In
such instances, we must, as Hu and Dannenberg suggest,
resort to multiple queries, one for each possible scaling
factor. Clearly, this is untenable for a real time system.
What we really need is a technique that can perform a
single efficient query to retrieve all qualifying time series
with any scaling. This is exactly the contribution of this
paper.
The rest of this paper is organized as follows. Section 2
carefully motivates the need for similarity search under
uniform scaling, and reviews related work. In Section 3
we introduce our approach to the problem. Section 4
contains an extensive empirical evaluation on 5 real world
datasets. Finally, Section 5 contains conclusions and
directions for future work.

2. Motivating the Need for Uniform Scaling

Many non-Euclidean distance measures for time series
have been introduced; however, a recent empirical study
suggests that most of them are of questionable utility [16].
Therefore, before introducing our techniques for dealing
with uniform scaling, we will conduct some simple

experiments to motivate its absolute need in a video
surveillance setting. We begin by briefly discussing our
experimental setup.

2.1 Experimental Setup

For our experiments we used a Canon ZR40 camcorder
with the shutter at 1/60, video size of 720x480 pixels, and
captured video at 30 frames per second. We use the
technique of tracking color in the video sequence to
estimate the position of objects of interest.
The position detection for the hand movement in the
experiments uses a color-tracking algorithm. A frame that
has good color visibility is selected from the video
sequence, which in the experiment is a frame where the
object of interest (in our case, the right hand) is at rest.
The selected frame is then used to calculate Hue (H),
Saturation (S), and Value (V) from each pixel. A region
of the color to be tracked (red in this case) is also selected
and this forms the region of interest (ROI). The HSV
from each pixel of the selected frame, along with the
mean and covariance from the ROI of the selected frame
form the input to find the probability distribution for the
ROI over the whole image [8]. The probability
distribution uses a multivariate Gaussian and results in a
probability matrix the size of the image. This resultant
matrix is converted to a binary image by thresholding,
and then the resultant binary image is used to compute the
centroid position of the hand. We note that our feature
extraction system is somewhat naïve, since the main
contribution of this work is indexing of the extracted data.
More sophisticated and realistic techniques for human
body motion acquisition from video can be found in the
literature [5][15][21][22].

2.2 The Gun Problem Experiment

We recorded a dataset to use as reference containing two
classes, each with 50 examples. All instances were
created using the same female actor (who is 155 cm tall),
in a single session. The two classes are:
• Gun-Draw: The actor has her hands by her side. She

draws a replicate gun from a hip mounted holster,
points it at a target for approximately one second,
then returns the gun to holster, and her hands to her
side.

• Point: The actor has her hands by her side. She
points with her index finger to a target for
approximately one second, and then returns her
hands to her side.

For both classes, we tracked the centroid of the right hand
in both the X- and Y-axis of the image plane; however, in
the experiments that follow, we will consider just the Y-
axis for simplicity.

The overall motions of both classes are very similar.
However, it is possible for humans to visually classify the
two classes with great accuracy, after noting that the actor
must lift her hand above holster, then reach down for the
gun, this action creates a subtle distinction between the
classes as seen in Figure 2.

Figure 2. Sample Y-axis motion streams from the video
surveillance gun problem. (Left) Samples of the point class are
characterized by a smooth transition from the resting position to
the pointing position. (Right) Samples of the Gun-Draw class
are superficially similar, but are characterized by a dip where
the actor reaches down towards the holster to grasp the gun.

We created a similar dataset with another actor, this time
a male, who is 190cm tall. The difference in height
between the two actors is not too much of a problem,
since a standard preprocessing step in matching motion
streams is to perform Z-normalization before performing
comparisons [3][19]. However, detailed visual inspection
of both the video and the extracted time series suggests
that the male actor draws his gun more slowly.
We performed the following experiment; we manually
extracted the 50 male-Gun-Draw sequences beginning
with just before the gun is drawn, and ending
approximation 0.5 seconds after the gun was pointed at
the target. We used these sequences as a query to the
female reference dataset, recording a match to the Gun-
Draw class as a success, and a match to the Point class as
a failure. We compare two distance measures, the classic
Euclidean distance [3][7][17][18] and the Euclidean
distance after allowing any uniform scaling between 70%
and 130%. Table 1 summarizes the results:

Table 1. A comparison of accuracy and time for two
approaches on the Gun problem.

 Accuracy Time
(sec)

Euclidean Distance 54% 0.89
Uniform Scaling 96% 51.4

The results for Euclidean distance are little better than
random guessing; on the other hand, uniform scaling
works quite well. The intuition for its success is as
follows; without rescaling, the two time series only match
in the coarse details (they both begin with low Y values,
and transition to high Y values, where they hold steady).

However, after uniform scaling corrects for the
differences in speed of the two actors, the smaller details
(i.e. the “dip” in the Gun-Draw class) that actually
differentiate the classes, become relatively more
important.
These results strongly reiterate the utility of uniform
scaling, they also show that, naively calculated, it may be
too slow for practical real time systems.

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving to
shoulder level

Steady pointing

Hand at rest

Hand moving
above holster

Hand moving
down to grasp gun

Hand moving to
shoulder level

Steady pointing

Point Gun-Draw

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving to
shoulder level

Steady pointing

Hand at rest

Hand moving
above holster

Hand moving
down to grasp gun

Hand moving to
shoulder level

Steady pointing

Point Gun-Draw

2.3 Related Work

In the past decade, there have been literally hundreds of
papers on similarity search using the Euclidean distance
[3][7][17][18]; useful surveys can be found in [11] and
[29]. However, there has been an increasing awareness
that the Euclidean distance may be unsuitable for many
applications [1][16][31][32], particularly for applications
that involve biological processes such as gait [10], gene
expression [6] and video surveillance [2].
Dozens of non Euclidean distance measures for time
series have been introduced in the last decade, however, a
recent empirical study suggests that most of them are of
debatable utility [16]. The only non-Euclidean distance
measure that has been forcefully shown to be superior to
Euclidean distance is DTW; its utility has been
demonstrated in domains as diverse as bioinformatics [1],
chemical engineering, gait analysis [10], speech
recognition, meteorology, music retrieval [12][32], and
robotics. However, DTW only considers local stretching
and shrinking of the time axis. As we demonstrated in the
previous section, uniform scaling may be equally
important for video surveillance.
The utility of uniform scaling has been noted before
[12][14][26][27]. However, all previous work has focused
on speeding up similarity search, when the scaling factor
is known. For example, there are systems that can index
data of length 200, and support queries of any length
from 150 to 200. However, the user must specify what
query length they wish to run, perhaps a query of length
175. If the user wishes to find the best matching time
series, at any length from 150 to 200, they would have to
run every possible query, of length 150, 151 ,…, 200 to
find the answer. This is clearly untenable. As all these
systems claim about one order of magnitude speed up,
placing them in a loop and running them 50 times is
clearly going to be self defeating. The feature that
differentiates our work from the rest is that we allow a
user to issue a single query, and find the best match at any
scaling. Our proposed technique is unique in this aspect.
Since the main contribution of this work is in feature
indexing, not feature extraction, we have not considered
related work in the vast body of literature on capturing
the human motion from video (and other sources), instead

we refer the interested reader to [24] which contains an
excellent overview.

3. Uniform Scaling

We begin by formally defining the uniform scaling
problem. Although our data type of interest is variously
called “motion streams”, “trajectories”, “sequences”, etc,
we will hereafter use the unifying term “time series”.
Although in the video surveillance domain, we may be
ultimately interested in working with two or three-
dimensional data [6][15][21][22][23][31], we will
consider only one-dimensional time series for simplicity.
Suppose we have two time series, a query Q and a
candidate match C, of length n and m respectively, where:

Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

For clarity of presentation, we will assume that n ≤ m,
that is to say, C is always longer than or equal to Q, and
thus we are only interested in stretching the query to
match some prefix of C. This assumption is only to
simplify notion and does not preclude matching a time
series by shrinking, since we can always reverse the roles
of the sequences.
If we wish to compare the two time series, and it happens
that n = m, we can use the ubiquitous Euclidean distance:

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (3)

Since the square root function is monotonic and concave,
we can remove the square root step and get identical
rankings, clustering and classifications. This measure is
called the squared Euclidean distance:

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (4)

In addition to the utility of slightly speeding up the
calculations, working with this distance measure makes
other optimizations possible [19].
If n is smaller than m, then the distance measures
introduced above are not defined. To compare the two
time series in this case, we have several choices; we can
truncate C and compare Q to [c1,c2,…, cn], or we can
somehow stretch Q to be of length m, or more generally
we can stretch Q to be of length p, (n ≤ p ≤ m), truncate
off the last m-p values of Q, then use squared Euclidean
distance. The informal idea behind stretching can be
captured in the more formal definition of scaling. To scale
time series Q to produce a new time series QP of length p,
the formula is:

QPj = Q  j * n/p , 1 ≤ j ≤ p (5)

Note that we can quickly obtain any scaling in O(p) time.
We call the ratio p/n the scaling factor or sf. Slightly
different definitions of scaling do exist, but they do not
affect the results that follow. Figure 3 visually
summarizes the above definitions.

0 100 200 300 400

Q

QP

D(QP, C[1:p])

0 100 200 300 400

C

Q

D(Q,C[1:n])

0 100 200 300 400

Q

QP

D(QP, C[1:p])

0 100 200 300 400

Q

QP

D(QP, C[1:p])

0 100 200 300 400

C

Q

D(Q,C[1:n])

0 100 200 300 400

C

Q

D(Q,C[1:n])

Figure 3. A visual summary of the notation introduced in
this section. (Top-left) A candidate time series C, and a
shorter query Q. (Top-right) The squared Euclidean distance
between Q and the first n data points in C can be visualized
as the sum of the squared lengths of the gray hatch lines.
(Bottom-left) The query Q can be stretched to length p,
producing a new time series QP. (Bottom-right) In this case,
QP is a good match to the first p data points in C.

3.1 Brute Force Search Under Uniform Scaling

If we wish to find the best scaled match between Q and C,
we can simply test all possible scalings, as illustrated in
Table 2.

Table 2. An algorithm to find the best scaled match between
two time series

Algorithm:

Test_All_Scalings(Q,C)

best_match_val = inf;

best_scaling_factor = null;

for p = n to m

QP = rescale(Q,p);

distance = squared_Euclidean_dist(QP, C[1..p]);

if distance < best_match_val

best_match_val = distance;

best_scaling_factor = p/n;

end;

end;

return(best_match_val, best_scaling_factor)

The algorithm takes only O(p*(m-n)) time and seems
unworthy of any optimization effort. However, when
indexing real world datasets, rather than having a single
candidate time series C, we are typically confronted with
massive collection of possible candidate time series,
which will denote as C. To find the best scaled match to a
query Q, in data collection C, we can use a brute force
algorithm as shown in Table 3.
Note that the time complexity for this algorithm is O(|C|
* (m-n)), which is simply untenable for large datasets.

Table 3. An algorithm to find the best scaled match to query
from a set of possible matches

Algorithm:

Search_Database_for_Scaled_Match(Q,C)

overall_best_time_series = null;

overall_best_match_val = inf;

overall_best_scaling = null;

for i = 1 to number_of_time_series_in_(C)

[dist, scale] = Test_All_Scalings(Q,Ci)

if dist < overall_best_match_val

overall_best_time_series = i;

overall_best_match_val = dist;

overall_best_scaling = scale;

end;

end;

return(overall_best_time_series,

overall_best_match_val, overall_best_scaling)

3.2 Speeding up Search with Lower Bounding

To speed up matching under uniform scaling we will rely
on the classic idea of lower bounding. The intuition is
this: given some technique for quickly calculating the
minimum possible distance between the query and a
candidate sequence at any possible scaling, we can prune
off many calculations. In more detail, we maintain a
variable that contains the distance of the best-scaled
match encountered thus far. Before calling the subroutine
Test_All_Scalings on the next candidate time series,
we first perform the quick lower bounding test. If the
lower bound distance between the candidate and the
query is greater than the distance of the best-scaled match
already seen, we can simply discard the candidate from
consideration. For clarity, the idea is formalized in Table
4, although the algorithm differs from the algorithm in
Table 3 only in the addition of the lower bounding test as
a precondition to the subroutine Test_All_Scalings.

Table 4. A modified algorithm for searching for the best
match under uniform scaling

Algorithm:
Faster_Search_Database_for_Scaled_Match(Q,C)
overall_best_time_series = null;
overall_best_val = inf;
overall_best_scaling = null;
for i = 1 to number_of_time_series_in_(C)
if lower_bound_distance(Q,Ci) <overall_best_val
[dist, scale] = Test_All_Scalings(Q,Ci)
if dist < overall_best_match_val

overall_best_time_series = i;
overall_best_match_val = dist;
overall_best_scaling = scale;

end;
end;

end;
return(overall_best_time_series,

overall_best_match_val, overall_best_scaling)

There are only two important properties of a lower
bounding measure:
• It must be fast to compute. A measure that takes as

long to compute as Test_All_Scalings is of
little use. We would like the time complexity to be at
most linear in the length of the time series.

• It must be a relatively tight lower bound. A function
can achieve a trivial lower bound by always returning
zero as the lower bound estimate. However, in order
for the algorithm in Table 4 to be effective, we
require a method that tightly bounds the value of the
best match.

The idea of speeding up search using lower bounding is
not new; in fact, it is the cornerstone of virtually every
similarity search algorithm. However, while dozens of
lower bounding measures are known for Euclidean
distance [3][7][14][17][18], and three lower bounding
measures known for DTW [16][32], there is no lower
bounding measure in the literature for uniform scaling. In
the next section, we introduce the first such measure.

3.3 Lower Bounding Uniform Scaling

To create a lower bounding distance measure for uniform
scaling we will generate a bounding envelope. Bounding
envelopes were introduced in [16] to lower bound DTW,
and since then they have sparked a flurry of research
activity [9][28][31][32]. While the principle is the same
here, the definitions of the envelope are very different. In
particular, we create two sequences U and L, such that:

Ui = max(c (i-1)*m/n +1,…, c i*m/n) (6)
Li = min(c (i-1)*m/n +1,…, c i*m/n) (7)

These sequences can be visualized as bounding the first n
points of the time series C. Figure 4 shows some
examples.

Figure 4. (Top-center) A time series C of length 100.
(Bottom-left) The time series shrouded by upper and lower
envelopes U and L with lengths 80. (Bottom-right) The
same time series shrouded by upper and lower envelopes U
and L with lengths 60.

Having defined the U and L, we can now discuss the
lower bounding function; it is a modification of the one
introduced in [16] for the problem of DTW.

∑
= 







<−
>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

CQKeoghLB
1

2

2

0
)(
)(

),(_
 (8)

This function can be visualized as the squared Euclidean
distance between any part of the query time series not
falling within the envelope and the nearest (orthogonal)
corresponding section of the envelope. Figure 5 illustrates
the idea.

Figure. 5. (Top) A time series C and a shorter query Q.
(Bottom) A visualization of the lower-bounding function
LB_Keogh(Q,C). Note that any part of query time series Q
that falls inside the bounding envelope is ignored.
Otherwise, the distance corresponds to the sum of the
squared straight-line distances from the query to the nearest
point in the envelope (the gray hatch lines).

0 10 20 30 40 50 60 70 80 90 100

U

L n = 80

0 10 20 30 40 50 60 70 80 90 100

U

L n = 60

0 10 20 30 40 50 60 70 80 90 100

C

m = 100

0 10 20 30 40 50 60 70 80 90 100

U

L n = 80

0 10 20 30 40 50 60 70 80 90 100

U

L n = 80

0 10 20 30 40 50 60 70 80 90 100

U

L n = 60

0 10 20 30 40 50 60 70 80 90 100

U

L n = 60

0 10 20 30 40 50 60 70 80 90 100

C

m = 100

0 10 20 30 40 50 60 70 80 90 100

C

m = 100

We have claimed that LB_Keogh(Q,C) lower bounds the
squared Euclidean distance between any scaling of Q, and
the appropriate prefix of C. The proof is straightforward;
we omit it for brevity.

3.4 Indexing under Uniform Scaling

As noted in Section 3.2, if we have a distance measure
that is expensive in terms of CPU time, we can
dramatically speed up similarity search using a tight
lower bound. However, if the majority of the data exists
on secondary storage, the CPU costs may be dwarfed by
the disk (or tape) access time. The solution is to index the
data.
Fortunately, the ability to index uniform scaling
essentially comes for free! A technique for indexing
envelopes under LB_Keogh was introduced in [16]. Since
then, many other researchers have used this technique and
suggested extensions [9][28][31][32]. This explosion of
interest has ensured that indexing of time series envelopes
has become a mature technology in only one year. For
completeness, we will discuss the minor extensions to
[16] necessary to index under uniform scaling.
We have previously denoted a time series as C = c1,…, cn.
We assume each sequence in our database is n units long.
Let N be the dimensionality of the space we wish to index
(1 ≤ N ≤ n). For convenience, we assume that N is a factor
of n.
A time series C of length n can be represented in N
dimensional space by a vector Ncc ,,1 K=C . The ith

element of C is calculated by the following equation:

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 100

LB_Keogh(Q,C)

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 100

LB_Keogh(Q,C)

0 10 20 30 40 50 60 70 80 90 100

LB_Keogh(Q,C)

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

cc
1)1(

 (9)

In other words, to reduce the time series from n
dimensions to N dimensions, the data is divided into N
equal sized “frames”. The mean value of the data falling
within a frame is calculated and a vector of these values
becomes the data reduced representation. The
representation can best be visualized as an attempt to
model the original time series with a linear combination
of box basis functions as shown in Figure 6.

0 20 40 60 80 100 120

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0 20 40 60 80 100 120

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

Figure 6. The PAA representation can be visualized as an
attempt to model a sequence with a linear combination of
box basis functions. In this example, the first 128 data
points of one of the gun-problem instances are reduced to 16
dimensions.

3.4.1 Modifying PAA to index uniform scaling queries

In Section 3.3, we discussed the lowering bounding
function LB_Keogh. However, calculating this function
requires n values. Since n may be in the order of hundreds
to thousands for realistic human motion, and multi-
dimensional index structures begin to degrade rapidly
somewhere above 16 dimensions, we need a way to create
a lower, N dimension version of the function, where N is
a number that can be reasonably handled by a multi-
dimensional index structure. We also need this lower
dimension version of the function to lower bound
LB_Keogh (and therefore, by transitivity, uniform
scaling).
We begin by creating special piecewise constant
approximations of U and L, which we will denote as U
and

ˆ

L̂ . Although they are piecewise constant
approximations, the definitions of U and ˆ L̂ differ from
those we have seen in Eq. 6 and 7. In particular, we have

() ()()iii
N
n

N
n UUU ,...,maxˆ

11 +−= (10)

() ()()iii
N
n

N
n LLL ,...,minˆ

11 +−= (11)

We can visualize U and ˆ L̂ as the piecewise constant
functions which bound, without intersecting, U and L,
respectively. Figure 7 illustrates this intuition.

Figure 7. We can readily visualize of U and ˆ L̂ as the
piecewise constant functions which bound, without
intersecting, U and L, respectively. (Left) The U and ˆ L̂ for
the time series shown in Figure 4. (Right) The U and ˆ

L̂ shown overlaid on top of the generating time series.
We are now able to define the low dimension, lower
bounding function, which we denote as LB_PAA. Given
a candidate sequence C, transformed to C by Eq. 9, and
a query sequence Q, with its companion PAA functions

 and , the following function lower bounds
LB_Keogh
Û L̂

∑
= 








<−
>−

=
N

i
iiii

iiii

otherwise
LcifLc
UcifUc

N
nCQPAALB

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(
),(_

 (12)
The final step necessary to allow indexing is to define a
MINDIST(Q,R) function that returns a lower bounding
measure of the distance between a query Q and R, where
R is its Minimum Bounding Rectangle (MBR).
Suppose our index structure contains a leaf node U. Let R
= (L, H) be the MBR associated with U where L = {l1, l2,
…, lN} and H = {h1, h2, …, hN} are the lower and higher
endpoints of the major diagonal of R. By definition, R is
the smallest rectangle that spatially contains each PAA
point NccC ,,1 K= stored in U. Given the above,

MINDIST(Q,R) is defined as:

∑
= 








<−
>−

=
N

i
iiii

iiii

otherwise
LhifLh

UlifUl

N
nRQMINDIST

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(
),(

 (13)

This function is visualized in Figure 8.

Figure 8. A) A representation of a Minimum Bounding
rectangle (MBR). B) A subsection of the query shown in
Figure 4, with its attendant functions U and ˆ L̂ . C) An
illustration of the MINDIST function. The lengths of the
arrow lines, squared, scaled by n/N, summed and square
rooted, are returned as the minimum distance between Q and
any sequence contained within R

Having defined a lower bounding function between a
query time series and all scalings (LB_Keogh), and an a
lower bound between a query and all objects in a MBR
(MINDIST) we can use any of the many K-Nearest
Neighbor search algorithms in the literature. In this work,
we use the algorithm proposed in [30]. The basic intuition
of the algorithm is to use a priority queue to prioritize the
order in which to test the full Euclidean distance (at
arbitrary scales). Two types of things can be inserted into
the priority queue, MBRs and {U, L} tuples, sorted by
MINDIST and LB_Keogh, respectively. As soon as the
best-so-far distance is less than the value at the head of
the queue, the search is finished. Until that point is
reached, the object at the head of the queue is dequeued.
If it is an MBR, the corresponding {U, L} tuples are
enqueued; if, on the other hand, it is a {U, L} tuple,
algorithm Test_All_Scalings(Q,C) is performed on the
corresponding candidate time series and the best-so-far
time series distance is updated as appropriate. We
encourage the reader to consult [30] for more details.

4. Experimental Results

In this section, we test our proposed approach with a
comprehensive set of experiments. We compare only to
the brute force search algorithm defined in Table 3,
because there are no other techniques that support
uniform scaling queries with a single query. To eliminate

the possibility of implementation bias [19], we will report
the Pruning Power, the fraction of times that our
approach must call the squared Euclidean distance
function.

0 10 20 30 40 50 60 70 80 90 100

MINDIST(Q,R)

h1

MBR R = (L, H)
L = {l1, l2,… lN}
H = {h1, h2,… hN}

h2

l1 l2

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^
hN

lN

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

MINDIST(Q,R)

h1

MBR R = (L, H)
L = {l1, l2,… lN}
H = {h1, h2,… hN}

h2

l1 l2

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^
hN

lN

searchforcebrutebyfunctionncestaditocallsofNumber
approachproposedbyfunctionncestaditocallsofNumberPowerruningP = (14)

This measure depends only on the tightness of the lower
bounds, and is independent of language, platform,
caching or any other implementation details. As an
additional sanity check, we also measured the CPU time.
However, since it is almost perfectly correlated with the
Pruning Power, we will omit it for brevity.
It has been forcefully demonstrated that the quality of
lower bounding measures, and therefore the speed of
search, can vary greatly depending on the data [19]. We
therefore tested our approach on a variety of datasets.
Since we currently have only one video surveillance
dataset, we also used other biomedical and biomechanical
datasets from the literature. Figure 9 shows a sample of
each.

Gait

0 50 100 150

ECG

Video
Surveillance

Gait

0 50 100 1500 50 100 150

ECG

Video
Surveillance

Figure 9. Randomly extracted samples of the time series
datasets used in the experiments. The gait dataset came from
PhysioBank, and the ECG dataset came from the UCR time
series archive.

Since the speedup obtained from our approach clearly
depends on range of scaling factors and the length of the
time series, we will test our approach for the cross
product of scaling factors = {1.05, 1.10, 1.15, 1.20, 1.25}
and time series candidate lengths of {16, 32, 64, 128,
256}.
We conducted our experiments as follows. We randomly
removed a subsequence of the appropriate length from the
data to use as a query, and then we randomly chose 5,000
other subsequences to act as the database. We then
searched for the best scaled match, noting the pruning
power. We repeated this 100 times for every combination
of scaling factors and candidate lengths. Figure 10. shows
the results.

Figure 10. The pruning power of LB_Keogh of 3 different
datasets, over a range of scaling factors and candidate lengths

The results are quite impressive. The worst case is a
single order of magnitude speedup; more generally, two
to three orders of magnitude speedup are observed. Note
that the pruning power seems independent of the
candidate time series lengths, but does get worse as the
scaling factor increases. This is to be expected since for
large scaling factors, the LB_Keogh function has
relatively little information with which to calculate the
lower bound.
As with many indexing techniques, the pruning power of
our approach improves with the size of the dataset. The
intuition behind this effect is that the larger the dataset,
the more likely we are to find a very close match early on
in the search, and thus derive the maximum benefit from
the lower bound pruning test (the outermost if statement
in Table 4). To demonstrate this, we repeated the previous
experiment for different size datasets. The results for just
the video surveillance dataset are shown in Figure 11.

Figure. 11. The pruning power of LB_Keogh on the burst
dataset, over a range of scaling factors and database sizes.
Note the scale of the Z-axis is different from that of Figure
10.

The results clearly show that as the database size
increases, the pruning power improves. This is a very
desirable property when indexing larger datasets.

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g

Po
w

er

Scaling Factor

1.25
1.2

1.15
1.1

1.05 Candidate Time Series Length

Video Surveillance

ECG
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g

Po
w

er

Scaling Factor

1.25
1.2

1.15
1.1

1.05

1.25
1.2

1.15
1.1

1.05 Candidate Time Series Length

Video Surveillance

ECG

Gait
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g

Po
w

er

Scaling Factor

1.25
1.2

1.15
1.1

1.05

1.25
1.2

1.15
1.1

1.05 Candidate Time Series Length

Video Surveillance

ECG
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g

Po
w

er

Scaling Factor

1.25
1.2

1.15
1.1

1.05

1.25
1.2

1.15
1.1

1.05 Candidate Time Series Length

Video Surveillance

ECG

Gait
1.25

1.2
1.15

1.1
1.05

1.25
1.2

1.15
1.1

1.05 Candidate Time Series Length

Video Surveillance

ECG

Gait

5. Conclusions

We have shown how to index similarity search under
uniform warping. We motivated the need for such an
ability by showing that for at least some video
surveillance problems, small changes in scale can
completely confuse the other similarity measures.
We plan to extend this work in several directions. First
we hope to extend the matching under uniform scaling to
multi-dimension time series, second, we plan to
incorporate both DTW and uniform scaling into a single
unified framework.

Reproducible Results Statement: All datasets and code
used in this paper are available for free, by emailing the
authors.

6. References

[1] Aach, J. and Church, G. (2001). Aligning gene expression

time series with time warping algorithms. Bioinformatics.
Volume 17, pp 495-508

[2] Alon, J., Sclaroff, S., Kollios, G., and Pavlovic, V. (2003).
Discovering Clusters in Motion Time-Series Data. In the
Proc. of the IEEE CVPR 2003

[3] Chan, K. & Fu, A. W. (1999). Efficient time series
matching by wavelets. In proceedings of the 15th IEEE Int'l
Conference on Data Engineering. Sydney, Australia. pp
126-133

[4] Chu, K., Lam., S. & Wong, M. (1998) An Efficient Hash-
Based Algorithm for Sequence Data Searching. The
Computer Journal 41 (6): 402-415

[5] Comaniciu, D., Ramesh, V., and Peter Meer (2003).
Kernel-Based Object Tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence 25(5): 564-575
(2003)

Pr
un

in
g

Po
w

er

Size of Database 51202,5601,28064032016080402010

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1.25
1.20
1.15
1.10
1.05

Scaling
FactorsVideo

Surveillance
Data

Pr
un

in
g

Po
w

er

Size of Database 51202,5601,28064032016080402010

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1.25
1.20
1.15
1.10
1.05

Scaling
Factors

1.25
1.20
1.15
1.10
1.05

Scaling
FactorsVideo

Surveillance
Data

[6] Corradini. A. (2001). Dynamic Time Warping for Off-line
Recognition of a Small Gesture Vocabulary. In
Proceedings of the 2nd IEEE International Conference on
Recognition, Analysis and Tracking of Faces and Gestures
in Real-Time Systems, pp. 82-89.

[7] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series
databases. In Proc. ACM SIGMOD Conf., Minneapolis. pp.
419-429

[8] Forsyth, D.A. and Ponce, J. (2001). Computer Vision: a
modern approach, Prentice-Hall, 2001

[9] Fung, W and Wong, M. (2003). Efficient Subsequence
Matching for Sequences Databases under Time Warping .
The 7th International Database Engineering and
Application Symposium Hong Kong.

[10] Gavrila, D. M. & Davis,L. S.(1995). Towards 3-d model-
based tracking and recognition of human movement: a
multi-view approach. In International Workshop on
Automatic Face- and Gesture-Recognition

[11] Hetland, M. (2003). A Survey of Recent Methods for
Efficient Retrieval of Similar Time Sequences. To appear
in an Edited Volume, Data Mining in Time Series
Databases. Published by the World Scientific Publishing
Company

[12] Hu, N. and Dannenberg, R.B. (2002). A comparison of
melodic database retrieval techniques using sung queries.
ACM/IEEE Joint Conference on Digital Libraries, JCDL
2002, Portland, Oregon, USA, June 14-18, 2002: pp. 301-
307

[13] Johansson, G. (1973). Visual perception of biological
motion and a model for its analysis. Perception and
Psychophysics, 14:210-211, 1973.

[14] Kahveci, T. & Singh, A. (2001). Variable length queries
for time series data. In proceedings of the 17th Int'l
Conference on Data Engineering. Heidelberg, Germany,
pp 273-282

[15] Kakadiaris, I.A. and Metaxas, D. (2000). Model-based
estimation of 3D human motion. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(12), pp.
1453-1459, 2000

[16] Keogh, E. (2002). Exact indexing of dynamic time
warping. In 28th International Conference on Very Large
Data Bases. Hong Kong. pp 406-417

[17] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra
(2000). Dimensionality reduction for fast similarity search
in large time series databases. Journal of Knowledge and
Information Systems. pp 263-286

[18] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001)
Locally adaptive dimensionality reduction for indexing
large time series databases. In Proc of ACM SIGMOD
Conference on Management of Data. pp 151-162

[19] Keogh, E. and Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. In the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
Edmonton, Canada. pp 102-111.

[20] Kozlowski L T & Cutting J E (1977) Recognizing the
gender of walkers from dynamic point-light displays.
Perception and Psychophysics 21 575-580.

[21] Marchesotti, L., Marcenaro, L., and Regazzoni, C.S. (2002)
Tracking and counting multiple interacting pedestrian in
indoor scenes, Third IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance June
1, 2002 (in conjunction with ECCV'02) Copenhagen,
Denmark. (2002 IEEE)

[22] Mikic, I., Trivedi, M., Hunter, E., and Cosman, P. (2002).
Human Body Model Acquisition and Tracking using Voxel
Data, International Journal of Computer Vision, 2002.

[23] Mittal, A. and Davis, L.S. (2003). M2Tracker: A Multi-
View Approach to Segmenting and Tracking People in a
Cluttered Scene. Anurag Mittal and Larry S. Davis.
International Journal of Computer Vision. Vol. 51 (3),
Feb/March 2003

[24] Moeslund, T. and Granum, E. (2001). A survey of
computer vision-based human motion capture. CVIU,
81(3):231--268, 2001.

[25] Montepare, J. M., & Zebrowitz-McArthur, L. (1988).
Impressions of people created by age-related qualities of
their gaits. Journal of Personality and Social Psychology,
55, 547-556.

[26] Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient
searches for similar subsequences of different lengths in
sequence databases. In proceedings of the 16th Int'l
Conference on Data Engineering. San Diego, CA, pp 23-
32

[27] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000).
Landmarks: a new model for similarity-based pattern
querying in time series databases. In proceedings of 16th
International Conference on Data Engineering. pp 33-42

[28] Rath, T. & Manmatha, R. (2002): Lower-Bounding of
Dynamic Time Warping Distances for Multivariate Time
Series. Tech Report MM-40, University of Massachusetts
Amherst.

[29] Roddick, J. F. and Spiliopoulou, M. (2001). A Survey of
Temporal Knowledge Discovery Paradigms and Methods.
IEEE Tran’s on Knowledge and Data Engineering. pp.
750-767

[30] Seidl, T. & Kriegel, H. (1998). Optimal multi-step k-
nearest neighbor search. SIGMOD Conference. pp 154-165

[31] Vlachos, M., Kollios, G., & Gunopulos, G. (2002).
Discovering similar multidimensional trajectories. In Proc
18th International Conference on Data Engineering

[32] Zhu, Y. & Shasha, D. (2003). Query by Humming: a Time
Series Database Approach. SIGMOD 2003.

