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Abstract 
 
Recent worldwide events have renewed interest in the use 
of video surveillance as a tool for private security, law 
enforcement and military applications. After appropriate 
feature extraction has taken place, most video 
surveillance problems are reduced to the problem of 
efficiently and robustly matching motion streams.  Since 
all natural motion typically has some variability in the 
time axis, Dynamic Time Warping (DTW), a technique 
that aligns the motion streams before calculating their 
similarity, is typically used. However, DTW can only 
address the problem of local scaling. As we demonstrate 
in this work, uniform scaling may be just as important for 
meaningful automatic analysis of video surveillance data 
streams. In this work, we demonstrate a novel technique 
to index of similarity search under uniform scaling. As we 
will demonstrate, our technique is simple and intuitive, 
and can achieve a speedup of 2 to 3 orders of magnitude 
under realistic settings.   

 
1. Introduction 
Recent worldwide events have renewed interest in the use 
of video surveillance as a tool for private security, law 
enforcement and military applications. After appropriate 
feature extraction has taken place, most video 
surveillance problems are reduced to the problem of 
efficiently and robustly matching motion streams (i.e. 
time series).  
The motivation for using this simple representation dates 
back to the classic experiments by Johansson [13]. 
Johansson created films of humans that are complexly 
blank except for a dozen or so light-points attached to 
actors body. He discovered that even when presented with 
such poor input information, people could instantly 
identify the actions being performed. Later studies 
showed simply by viewing these light points, people can 
even identify the gender [20] and the emotional state [25] 

of the actor. An additional pragmatic motivation for using 
a time series representation of video is the relative ease 
with which we can store, transmit and index time series. 
Since all natural motion typically has some variability in 
the time axis, Dynamic Time Warping (DTW), a 
technique that aligns the motion streams before 
calculating their similarity, is typically used [1]. 
However, DTW can only address the problem of local 
scaling. As we demonstrate in this work, global or 
uniform scaling may be just as important for meaningful 
automatic analysis of video surveillance data streams.  
For clarity, we illustrate the difference between local 
scaling and uniform scaling in Figure 1.  

 
 
 

Figure 1.  (Top) Stills from the video surveillance gun problem, the 
right hand is tracked, and converted into motion streams. (Bottom) 
Some snippets from the Y-axis of the gun dataset.  
I) We can attempt to match the Query A to the most similar 
subsection of a longer reference dataset. II) Dynamic time warping 
allows small, non-linear rescaling in the Y-axis to achieve a better fit. 
III) Query B corresponds to a much quicker draw of the gun, and 
DTW (IIII) is of little utility. By simply uniformly rescaling the query 
to make it 34% longer (V), its true similarity (VI) to a subsection of 
the reference sequence is revealed.  
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The problem of efficiently indexing patterns in large time 
series databases has attracted great interest in the database 
[7][11]][[17], data mining [3][14][29], and information 
retrieval communities [27]. However, the importance of 
dealing with both uniform and local scaling does not 
appear to have been fully understood. Typically, we find 
that researchers that are interested in performance issues 
use the simple Euclidean distance [3][7][11][14]. 
However, researchers that are application driven usually 
understand that Euclidean distance is inappropriate for 
most real world applications [1][10][12][28][32]. The 
limitations of Euclidean distance stems from the fact that 
it is very sensitive to distortions in the time axis. A partial 
solution to this problem, Dynamic Time Warping (DTW), 
essentially aligns the time axis before calculating the 
Euclidean distance.  
While dynamic time warping can only address the 
problem of local scaling, uniform scaling may be just as 
important in many domains, especially in biological and 
biometric domains. For example, a recent paper by Hu 
and Dannenberg [12] on the query-by-humming music 
retrieval problem, noted the need to “search the database 
with numerous time scaled versions of queries to cover a 
reasonable range of queries”. While this work makes a 
strong empirical argument for the necessity of uniform 
scaling, it does not advance any technique to help 
mitigate its time complexity.   
There exists a handful of techniques that can support 
similarity search under uniform scaling if the scaling 
factor is known in advance [4][14]; however, in most 
domains, it is unlikely that we know the scaling factor. In 
such instances, we must, as Hu and Dannenberg suggest, 
resort to multiple queries, one for each possible scaling 
factor. Clearly, this is untenable for a real time system. 
What we really need is a technique that can perform a 
single efficient query to retrieve all qualifying time series 
with any scaling. This is exactly the contribution of this 
paper.  
The rest of this paper is organized as follows. Section 2 
carefully motivates the need for similarity search under 
uniform scaling, and reviews related work. In Section 3 
we introduce our approach to the problem. Section 4 
contains an extensive empirical evaluation on 5 real world 
datasets. Finally, Section 5 contains conclusions and 
directions for future work. 

2.   Motivating the Need for Uniform Scaling  

Many non-Euclidean distance measures for time series 
have been introduced; however, a recent empirical study 
suggests that most of them are of questionable utility [16]. 
Therefore, before introducing our techniques for dealing 
with uniform scaling, we will conduct some simple 

experiments to motivate its absolute need in a video 
surveillance setting. We begin by briefly discussing our 
experimental setup. 

2.1   Experimental Setup 

For our experiments we used a Canon ZR40 camcorder 
with the shutter at 1/60, video size of 720x480 pixels, and 
captured video at 30 frames per second. We use the 
technique of tracking color in the video sequence to 
estimate the position of objects of interest. 
The position detection for the hand movement in the 
experiments uses a color-tracking algorithm. A frame that 
has good color visibility is selected from the video 
sequence, which in the experiment is a frame where the 
object of interest (in our case, the right hand) is at rest. 
The selected frame is then used to calculate Hue (H), 
Saturation (S), and Value (V) from each pixel. A region 
of the color to be tracked (red in this case) is also selected 
and this forms the region of interest (ROI). The HSV 
from each pixel of the selected frame, along with the 
mean and covariance from the ROI of the selected frame 
form the input to find the probability distribution for the 
ROI over the whole image [8]. The probability 
distribution uses a multivariate Gaussian and results in a 
probability matrix the size of the image. This resultant 
matrix is converted to a binary image by thresholding, 
and then the resultant binary image is used to compute the 
centroid position of the hand. We note that our feature 
extraction system is somewhat naïve, since the main 
contribution of this work is indexing of the extracted data. 
More sophisticated and realistic techniques for human 
body motion acquisition from video can be found in the 
literature [5][15][21][22]. 

2.2   The Gun Problem Experiment  

We recorded a dataset to use as reference containing two 
classes, each with 50 examples. All instances were 
created using the same female actor (who is 155 cm tall), 
in a single session. The two classes are:  
• Gun-Draw: The actor has her hands by her side. She 

draws a replicate gun from a hip mounted holster, 
points it at a target for approximately one second, 
then returns the gun to holster, and her hands to her 
side. 

• Point: The actor has her hands by her side. She 
points with her index finger to a target for 
approximately one second, and then returns her 
hands to her side. 

For both classes, we tracked the centroid of the right hand 
in both the X- and Y-axis of the image plane; however, in 
the experiments that follow, we will consider just the Y-
axis for simplicity.  



The overall motions of both classes are very similar. 
However, it is possible for humans to visually classify the 
two classes with great accuracy, after noting that the actor 
must lift her hand above holster, then reach down for the 
gun, this action creates a subtle distinction between the 
classes as seen in Figure 2.  

 

Figure 2. Sample Y-axis motion streams from the video 
surveillance gun problem.  (Left) Samples of the point class are 
characterized by a smooth transition from the resting position to 
the pointing position. (Right) Samples of the Gun-Draw class 
are superficially similar, but are characterized by a dip where 
the actor reaches down towards the holster to grasp the gun.   

We created a similar dataset with another actor, this time 
a male, who is 190cm tall. The difference in height 
between the two actors is not too much of a problem, 
since a standard preprocessing step in matching motion 
streams is to perform Z-normalization before performing 
comparisons [3][19]. However, detailed visual inspection 
of both the video and the extracted time series suggests 
that the male actor draws his gun more slowly.  
We performed the following experiment; we manually 
extracted the 50 male-Gun-Draw sequences beginning 
with just before the gun is drawn, and ending 
approximation 0.5 seconds after the gun was pointed at 
the target. We used these sequences as a query to the 
female reference dataset, recording a match to the Gun-
Draw class as a success, and a match to the Point class as 
a failure. We compare two distance measures, the classic 
Euclidean distance [3][7][17][18] and the Euclidean 
distance after allowing any uniform scaling between 70% 
and 130%. Table 1 summarizes the results: 
 
Table 1. A comparison of accuracy and time for two 
approaches on the Gun problem. 
 

 Accuracy Time 
(sec) 

Euclidean Distance 54% 0.89 
Uniform Scaling 96% 51.4 

 
The results for Euclidean distance are little better than 
random guessing; on the other hand, uniform scaling 
works quite well. The intuition for its success is as 
follows; without rescaling, the two time series only match 
in the coarse details (they both begin with low Y values, 
and transition to high Y values, where they hold steady). 

However, after uniform scaling corrects for the 
differences in speed of the two actors, the smaller details 
(i.e. the “dip” in the Gun-Draw class) that actually 
differentiate the classes, become relatively more 
important.  
These results strongly reiterate the utility of uniform 
scaling, they also show that, naively calculated, it may be 
too slow for practical real time systems.  
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2.3   Related Work 

In the past decade, there have been literally hundreds of 
papers on similarity search using the Euclidean distance 
[3][7][17][18]; useful surveys can be found in [11] and 
[29]. However, there has been an increasing awareness 
that the Euclidean distance may be unsuitable for many 
applications [1][16][31][32], particularly for applications 
that involve biological processes such as gait [10], gene 
expression [6] and video surveillance [2]. 
Dozens of non Euclidean distance measures for time 
series have been introduced in the last decade, however, a 
recent empirical study suggests that most of them are of 
debatable utility [16]. The only non-Euclidean distance 
measure that has been forcefully shown to be superior to 
Euclidean distance is DTW; its utility has been 
demonstrated in domains as diverse as bioinformatics [1], 
chemical engineering, gait analysis [10], speech 
recognition, meteorology, music retrieval [12][32], and 
robotics. However, DTW only considers local stretching 
and shrinking of the time axis. As we demonstrated in the 
previous section, uniform scaling may be equally 
important for video surveillance. 
The utility of uniform scaling has been noted before 
[12][14][26][27]. However, all previous work has focused 
on speeding up similarity search, when the scaling factor 
is known. For example, there are systems that can index 
data of length 200, and support queries of any length 
from 150 to 200. However, the user must specify what 
query length they wish to run, perhaps a query of length 
175. If the user wishes to find the best matching time 
series, at any length from 150 to 200, they would have to 
run every possible query, of length 150, 151 ,…, 200 to 
find the answer. This is clearly untenable. As all these 
systems claim about one order of magnitude speed up, 
placing them in a loop and running them 50 times is 
clearly going to be self defeating. The feature that 
differentiates our work from the rest is that we allow a 
user to issue a single query, and find the best match at any 
scaling. Our proposed technique is unique in this aspect.  
Since the main contribution of this work is in feature 
indexing, not feature extraction, we have not considered 
related work in the vast body of literature on capturing 
the human motion from video (and other sources), instead 



we refer the interested reader to [24] which contains an 
excellent overview. 

3.   Uniform Scaling 

We begin by formally defining the uniform scaling 
problem. Although our data type of interest is variously 
called “motion streams”, “trajectories”, “sequences”, etc, 
we will hereafter use the unifying term “time series”. 
Although in the video surveillance domain, we may be 
ultimately interested in working with two or three-
dimensional data [6][15][21][22][23][31], we will 
consider only one-dimensional time series for simplicity.  
Suppose we have two time series, a query Q and a 
candidate match C, of length n and m respectively, where: 

Q = q1,q2,…,qi,…,qn (1)
C = c1,c2,…,cj,…,cm (2)

For clarity of presentation, we will assume that n ≤ m, 
that is to say, C is always longer than or equal to Q, and 
thus we are only interested in stretching the query to 
match some prefix of C. This assumption is only to 
simplify notion and does not preclude matching a time 
series by shrinking, since we can always reverse the roles 
of the sequences.  
If we wish to compare the two time series, and it happens 
that n = m, we can use the ubiquitous Euclidean distance: 

( ) ( )∑ −≡
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n

i
ii cqCQD
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Since the square root function is monotonic and concave, 
we can remove the square root step and get identical 
rankings, clustering and classifications. This measure is 
called the squared Euclidean distance:  

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2,  (4)

In addition to the utility of slightly speeding up the 
calculations, working with this distance measure makes 
other optimizations possible [19]. 
If n is smaller than m, then the distance measures 
introduced above are not defined. To compare the two 
time series in this case, we have several choices; we can 
truncate C and compare Q to [c1,c2,…, cn], or we can 
somehow stretch Q to be of length m, or more generally 
we can stretch Q to be of length p, (n ≤  p ≤ m), truncate 
off the last m-p values of Q, then use squared Euclidean 
distance. The informal idea behind stretching can be 
captured in the more formal definition of scaling. To scale 
time series Q to produce a new time series QP of length p, 
the formula is: 

QPj = Q  j * n/p  , 1 ≤ j ≤ p (5)

Note that we can quickly obtain any scaling in O(p) time. 
We call the ratio p/n the scaling factor or sf. Slightly 
different definitions of scaling do exist, but they do not 
affect the results that follow. Figure 3 visually 
summarizes the above definitions. 
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Figure 3.  A visual summary of the notation introduced in 
this section. (Top-left) A candidate time series C, and a 
shorter query Q. (Top-right) The squared Euclidean distance 
between Q and the first n data points in C can be visualized 
as the sum of the squared lengths of the gray hatch lines. 
(Bottom-left) The query Q can be stretched to length p, 
producing a new time series QP. (Bottom-right) In this case, 
QP is a good match to the first p data points in C. 

3.1   Brute Force Search Under Uniform Scaling    

If we wish to find the best scaled match between Q and C, 
we can simply test all possible scalings, as illustrated in 
Table 2.  
 
Table 2. An algorithm to find the best scaled match between 
two time series 
 
Algorithm:

Test_All_Scalings(Q,C)

best_match_val = inf;

best_scaling_factor = null;

for p = n to m

QP = rescale(Q,p);

distance = squared_Euclidean_dist(QP, C[1..p]);

if distance < best_match_val

best_match_val = distance;

best_scaling_factor = p/n;

end;

end;

return(best_match_val, best_scaling_factor) 



 
The algorithm takes only O(p*(m-n)) time and seems 
unworthy of any optimization effort. However, when 
indexing real world datasets, rather than having a single 
candidate time series C, we are typically confronted with 
massive collection of possible candidate time series, 
which will denote as C. To find the best scaled match to a 
query Q, in data collection C, we can use a brute force 
algorithm as shown in Table 3.  
Note that the time complexity for this algorithm is O(|C|  
* (m-n)), which is simply untenable for large datasets. 
 
Table 3. An algorithm to find the best scaled match to query 
from a set of possible matches 
 
Algorithm:

Search_Database_for_Scaled_Match(Q,C)

overall_best_time_series = null;

overall_best_match_val = inf;

overall_best_scaling = null;

for i = 1 to number_of_time_series_in_(C)

[dist, scale] = Test_All_Scalings(Q,Ci)

if dist < overall_best_match_val

overall_best_time_series = i;

overall_best_match_val = dist;

overall_best_scaling = scale;

end;

end;

return(overall_best_time_series,

overall_best_match_val, overall_best_scaling)

3.2   Speeding up Search with Lower Bounding  

To speed up matching under uniform scaling we will rely 
on the classic idea of lower bounding. The intuition is 
this: given some technique for quickly calculating the 
minimum possible distance between the query and a 
candidate sequence at any possible scaling, we can prune 
off many calculations. In more detail, we maintain a 
variable that contains the distance of the best-scaled 
match encountered thus far. Before calling the subroutine 
Test_All_Scalings on the next candidate time series, 
we first perform the quick lower bounding test. If the 
lower bound distance between the candidate and the 
query is greater than the distance of the best-scaled match 
already seen, we can simply discard the candidate from 
consideration. For clarity, the idea is formalized in Table 
4, although the algorithm differs from the algorithm in 
Table 3 only in the addition of the lower bounding test as 
a precondition to the subroutine Test_All_Scalings. 
 
 
 

 
Table 4. A modified algorithm for searching for the best 
match under uniform scaling 
 
Algorithm:
Faster_Search_Database_for_Scaled_Match(Q,C)
overall_best_time_series = null;
overall_best_val = inf;
overall_best_scaling = null;
for i = 1 to number_of_time_series_in_(C)
if lower_bound_distance(Q,Ci) <overall_best_val
[dist, scale] = Test_All_Scalings(Q,Ci)
if dist < overall_best_match_val

overall_best_time_series = i;
overall_best_match_val = dist;
overall_best_scaling = scale;

end;
end;

end;
return(overall_best_time_series,

overall_best_match_val, overall_best_scaling)

 
There are only two important properties of a lower 
bounding measure:  
• It must be fast to compute. A measure that takes as 

long to compute as Test_All_Scalings is of 
little use. We would like the time complexity to be at 
most linear in the length of the time series. 

• It must be a relatively tight lower bound. A function 
can achieve a trivial lower bound by always returning 
zero as the lower bound estimate. However, in order 
for the algorithm in Table 4 to be effective, we 
require a method that tightly bounds the value of the 
best match. 

The idea of speeding up search using lower bounding is 
not new; in fact, it is the cornerstone of virtually every 
similarity search algorithm. However, while dozens of 
lower bounding measures are known for Euclidean 
distance [3][7][14][17][18], and three lower bounding 
measures known for DTW [16][32], there is no lower 
bounding measure in the literature for uniform scaling. In 
the next section, we introduce the first such measure.  

3.3   Lower Bounding Uniform Scaling 

To create a lower bounding distance measure for uniform 
scaling we will generate a bounding envelope. Bounding 
envelopes were introduced in [16] to lower bound DTW, 
and since then they have sparked a flurry of research 
activity [9][28][31][32]. While the principle is the same 
here, the definitions of the envelope are very different. In 
particular, we create two sequences U and L, such that: 

Ui = max( c (i-1)*m/n +1,…, c i*m/n  ) (6) 
Li = min( c (i-1)*m/n +1,…, c i*m/n  ) (7) 

These sequences can be visualized as bounding the first n 
points of the time series C. Figure 4 shows some 
examples.  



 

Figure 4. (Top-center) A time series C of length 100. 
(Bottom-left) The time series shrouded by upper and lower 
envelopes U and L with lengths 80. (Bottom-right) The 
same time series shrouded by upper and lower envelopes U 
and L with lengths 60. 

 
Having defined the U and L, we can now discuss the 
lower bounding function; it is a modification of the one 
introduced in [16] for the problem of DTW.  
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This function can be visualized as the squared Euclidean 
distance between any part of the query time series not 
falling within the envelope and the nearest (orthogonal) 
corresponding section of the envelope. Figure 5 illustrates 
the idea. 

 

Figure. 5. (Top) A time series C and a shorter query Q. 
(Bottom) A visualization of the lower-bounding function 
LB_Keogh(Q,C). Note that any part of query time series Q 
that falls inside the bounding envelope is ignored. 
Otherwise, the distance corresponds to the sum of the 
squared straight-line distances from the query to the nearest 
point in the envelope (the gray hatch lines). 
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We have claimed that LB_Keogh(Q,C) lower bounds the 
squared Euclidean distance between any scaling of Q, and 
the appropriate prefix of C. The proof is straightforward; 
we omit it for brevity.  

3.4   Indexing under Uniform Scaling 

As noted in Section 3.2, if we have a distance measure 
that is expensive in terms of CPU time, we can 
dramatically speed up similarity search using a tight 
lower bound. However, if the majority of the data exists 
on secondary storage, the CPU costs may be dwarfed by 
the disk (or tape) access time. The solution is to index the 
data.  
Fortunately, the ability to index uniform scaling 
essentially comes for free! A technique for indexing 
envelopes under LB_Keogh was introduced in [16]. Since 
then, many other researchers have used this technique and 
suggested extensions [9][28][31][32]. This explosion of 
interest has ensured that indexing of time series envelopes 
has become a mature technology in only one year. For 
completeness, we will discuss the minor extensions to 
[16] necessary to index under uniform scaling. 
We have previously denoted a time series as C = c1,…, cn.  
We assume each sequence in our database is n units long. 
Let N be the dimensionality of the space we wish to index 
(1 ≤ N ≤ n). For convenience, we assume that N is a factor 
of n.  
A time series C of length n can be represented in N 
dimensional space by a vector Ncc ,,1 K=C . The ith 

element of C is calculated by the following equation: 
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In other words, to reduce the time series from n 
dimensions to N dimensions, the data is divided into N 
equal sized “frames”. The mean value of the data falling 
within a frame is calculated and a vector of these values 
becomes the data reduced representation. The 
representation can best be visualized as an attempt to 
model the original time series with a linear combination 
of box basis functions as shown in Figure 6. 
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Figure 6. The PAA representation can be visualized as an 
attempt to model a sequence with a linear combination of 
box basis functions. In this example, the first 128 data 
points of one of the gun-problem instances are reduced to 16 
dimensions. 

3.4.1   Modifying PAA to index uniform scaling queries 

In Section 3.3, we discussed the lowering bounding 
function LB_Keogh. However, calculating this function 
requires n values. Since n may be in the order of hundreds 
to thousands for realistic human motion, and multi-
dimensional index structures begin to degrade rapidly 
somewhere above 16 dimensions, we need a way to create 
a lower, N dimension version of the function, where N is 
a number that can be reasonably handled by a multi-
dimensional index structure. We also need this lower 
dimension version of the function to lower bound 
LB_Keogh (and therefore, by transitivity, uniform 
scaling). 
We begin by creating special piecewise constant 
approximations of U and L, which we will denote as U  
and 

ˆ

L̂ . Although they are piecewise constant 
approximations, the definitions of U  and ˆ L̂ differ from 
those we have seen in Eq. 6 and 7. In particular, we have 
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We can visualize U  and ˆ L̂  as the piecewise constant 
functions which bound, without intersecting, U and L, 
respectively. Figure 7 illustrates this intuition.  

 
Figure 7. We can readily visualize of U  and ˆ L̂  as the 
piecewise constant functions which bound, without 
intersecting, U and L, respectively. (Left) The U  and ˆ L̂ for 
the time series shown in Figure 4. (Right) The U  and ˆ

L̂ shown overlaid on top of the generating time series. 
We are now able to define the low dimension, lower 
bounding function, which we denote as LB_PAA. Given 
a candidate sequence C, transformed to C  by Eq. 9, and 
a query sequence Q, with its companion PAA functions 
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The final step necessary to allow indexing is to define a 
MINDIST(Q,R) function that returns a lower bounding 
measure of the distance between a query Q and R, where 
R is its Minimum Bounding Rectangle (MBR).    
Suppose our index structure contains a leaf node U. Let R 
= (L, H) be the MBR associated with U where L = {l1, l2, 
…, lN} and H = {h1, h2, …, hN} are the lower and higher 
endpoints of the major diagonal of R. By definition, R is 
the smallest rectangle that spatially contains each PAA 
point NccC ,,1 K=  stored in U. Given the above, 

MINDIST(Q,R) is defined as: 
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This function is visualized in Figure 8.   



 
Figure 8. A) A representation of a Minimum Bounding 
rectangle (MBR). B) A subsection of the query shown in 
Figure 4, with its attendant functions U  and ˆ L̂ . C) An 
illustration of the MINDIST function. The lengths of the 
arrow lines, squared, scaled by n/N, summed and square 
rooted, are returned as the minimum distance between Q and 
any sequence contained within R 

Having defined a lower bounding function between a 
query time series and all scalings (LB_Keogh), and an a 
lower bound between a query and all objects in a MBR 
(MINDIST) we can use any of the many K-Nearest 
Neighbor search algorithms in the literature. In this work, 
we use the algorithm proposed in [30]. The basic intuition 
of the algorithm is to use a priority queue to prioritize the 
order in which to test the full Euclidean distance (at 
arbitrary scales). Two types of things can be inserted into 
the priority queue, MBRs and {U, L} tuples, sorted by 
MINDIST and LB_Keogh, respectively.  As soon as the 
best-so-far distance is less than the value at the head of 
the queue, the search is finished. Until that point is 
reached, the object at the head of the queue is dequeued. 
If it is an MBR, the corresponding {U, L} tuples are 
enqueued; if, on the other hand, it is a {U, L} tuple, 
algorithm Test_All_Scalings(Q,C) is performed on the 
corresponding candidate time series and the best-so-far 
time series distance is updated as appropriate. We 
encourage the reader to consult [30] for more details. 

4.   Experimental Results  

In this section, we test our proposed approach with a 
comprehensive set of experiments. We compare only to 
the brute force search algorithm defined in Table 3, 
because there are no other techniques that support 
uniform scaling queries with a single query. To eliminate 

the possibility of implementation bias [19], we will report 
the Pruning Power, the fraction of times that our 
approach must call the squared Euclidean distance 
function. 
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This measure depends only on the tightness of the lower 
bounds, and is independent of language, platform, 
caching or any other implementation details. As an 
additional sanity check, we also measured the CPU time. 
However, since it is almost perfectly correlated with the 
Pruning Power, we will omit it for brevity.  
It has been forcefully demonstrated that the quality of 
lower bounding measures, and therefore the speed of 
search, can vary greatly depending on the data [19]. We 
therefore tested our approach on a variety of datasets. 
Since we currently have only one video surveillance 
dataset, we also used other biomedical and biomechanical   
datasets from the literature. Figure 9 shows a sample of 
each. 
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Figure 9. Randomly extracted samples of the time series 
datasets used in the experiments. The gait dataset came from 
PhysioBank, and the ECG dataset came from the UCR time 
series archive. 

Since the speedup obtained from our approach clearly 
depends on range of scaling factors and the length of the 
time series, we will test our approach for the cross 
product of scaling factors = {1.05, 1.10, 1.15, 1.20, 1.25} 
and time series candidate lengths of {16, 32, 64, 128, 
256}. 
We conducted our experiments as follows. We randomly 
removed a subsequence of the appropriate length from the 
data to use as a query, and then we randomly chose 5,000 
other subsequences to act as the database. We then 
searched for the best scaled match, noting the pruning 
power. We repeated this 100 times for every combination 
of scaling factors and candidate lengths. Figure 10. shows 
the results. 



 
 

Figure 10. The pruning power of LB_Keogh of 3 different 
datasets, over a range of scaling factors and candidate lengths  
 
The results are quite impressive. The worst case is a 
single order of magnitude speedup; more generally, two 
to three orders of magnitude speedup are observed. Note 
that the pruning power seems independent of the 
candidate time series lengths, but does get worse as the 
scaling factor increases. This is to be expected since for 
large scaling factors, the LB_Keogh function has 
relatively little information with which to calculate the 
lower bound. 
As with many indexing techniques, the pruning power of 
our approach improves with the size of the dataset. The 
intuition behind this effect is that the larger the dataset, 
the more likely we are to find a very close match early on 
in the search, and thus derive the maximum benefit from 
the lower bound pruning test (the outermost if statement 
in Table 4). To demonstrate this, we repeated the previous 
experiment for different size datasets. The results for just 
the video surveillance dataset are shown in Figure 11. 

 
 

Figure. 11. The pruning power of LB_Keogh on the burst 
dataset, over a range of scaling factors and database sizes. 
Note the scale of the Z-axis is different from that of Figure 
10. 

 
The results clearly show that as the database size 
increases, the pruning power improves. This is a very 
desirable property when indexing larger datasets.  
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5. Conclusions  
 
We have shown how to index similarity search under 
uniform warping. We motivated the need for such an 
ability by showing that for at least some video 
surveillance problems, small changes in scale can 
completely confuse the other similarity measures. 
We plan to extend this work in several directions. First 
we hope to extend the matching under uniform scaling to 
multi-dimension time series, second, we plan to 
incorporate both DTW and uniform scaling into a single 
unified framework. 
 
Reproducible Results Statement: All datasets and code 
used in this paper are available for free, by emailing the 
authors. 
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